

Advantage

 VISION:Report

Advantage

 VISION:Forms

Reference Guide

16.1

RPREF161.PDF/D21-002-010

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction

About This Guide ..1-2

Contacting Computer Associates ..1-3

Chapter 2: File Specifications and Data Definitions

Statement Format and Sequence ...2-1

Literals ..2-3

Data Areas...2-3

VAL Area..2-6

File Availability ...2-15

Field Definition ...2-16

Field Definition Examples ..2-16

Field Definitions and Sizes ...2-18

Named Accumulators CTA Through CTP ...2-18

VSAM Support..2-19

VSAM Recommendations ..2-21

VSE Parameter Statements ...2-25

VSE I/O Parameter Statements - Examples ..2-25

Accessing More Than One Input File ..2-25

VSE Input and Output Files ..2-25

VSE Block/Record Size ..2-27

VSE Fixed Length Files...2-27

VSE Variable Length Files ..2-27

VSE Undefined Files ...2-28

VSE ISAM Files..2-28

ISAM Output Parameters for OFA ..2-29

VSE Considerations ...2-30

VISION:Report Parameter Statements ...2-30

Execute Statement .. 2-30

Contents iii

MVS Input and Output Files ... 2-31

MVS Block/Record Size ... 2-32

MVS Fixed Length Files.. 2-32

MVS Variable Length Files ... 2-33

MVS Undefined Files .. 2-33

MVS ISAM Files .. 2-34

MVS Considerations .. 2-34

VISION:Report Parameter Statements... 2-34

Functional Differences ... 2-34

Execute Statement... 2-35

DD Statement and File Characteristics .. 2-35

Table Notes... 2-35

Database Files .. 2-36

DB2 or SQL/DS... 2-36

ADABAS Interface .. 2-36

TOTAL Interface .. 2-37

DBOMP .. 2-37

User Abend Codes .. 2-37

Setting the Step Return Code... 2-37

Causing the Step to Abend ... 2-37

Chapter 3: Statement Format
General Rules.. 3-1

ABEND ... 3-2

ACCEPT .. 3-3

ACCUM .. 3-4

Simple Accumulation... 3-4

Addressable Accumulation ... 3-4

ACCUM (with REPORT) ... 3-5

ACCUM (User Addressable).. 3-8

ACCUM (Simple Accumulation) ... 3-10

ADD... 3-12

ADDRECORD.. 3-13

AND (Logical And) ... 3-14

ATEND .. 3-15

Automatic Summary Reporting .. 3-16

BREAK .. 3-17

CHECKBREAKS .. 3-18

CALL.. 3-19

iv VISION:Report Reference Guide

Language Environment Support ..3-19

Data Area Pointers...3-20

Using the CALL Statement to Execute User Coded Routines3-21

Technical Considerations...3-21

VISION:Report/User Routine Interface..3-22

COBOL Considerations ..3-23

COBOL Subroutines ...3-23

ANSINT ..3-24

VSE Considerations..3-25

MVS Considerations ...3-25

CHECKBREAKS ..3-25

CHECKBREAKS with No Operands ..3-25

CHECKBREAKS ON BREAKS PERFORM seq-no THRU seq-no3-26

CLOSE ...3-28

CLOSER (VSAM ONLY) ...3-29

CONDATE ...3-30

DELETE ..3-31

DISPLAY ...3-31

DIVD...3-32

DOHEADERS...3-33

DROP ..3-33

EJECT ..3-34

END ...3-34

80-Byte Input Only...3-34

80-Byte Input and Table Input ..3-35

EQU ...3-36

EQU Statements for VAL Area..3-39

EXDATE ...3-44

EXIT ...3-45

GET ..3-46

GOTO ..3-48

HDR ...3-49

Page Header Modification..3-52

HEXCOND ...3-53

HEXEXPD ..3-55

IF ..3-56

Arithmetic Comparison ..3-60

Numeric Comparison ..3-60

IF (Compound)..3-62

Bit Testing ..3-63

String Scanning..3-64

Contents v

Numeric Comparison ... 3-64

ELSE and ENDIF.. 3-64

Nested IF Syntax .. 3-65

Nesting ELSE and ENDIF.. 3-66

LIMITREADS .. 3-67

LINECOUNT... 3-68

LOAD ... 3-69

MOVCOND .. 3-70

MOVE ... 3-71

Data Conversion .. 3-74

Detailed Coding Rules... 3-74

Options .. 3-75

Move Print Position Requirements.. 3-80

Binary-Move Print Position Requirements ... 3-80

MOVE (Variable Length) .. 3-81

MOVE (Expanded Editing) .. 3-83

Edit Mask Patterns .. 3-84

Data Selector Characters ... 3-84

Edit Fill Character... 3-85

Punctuation Characters .. 3-85

Edit Mask Attributes .. 3-85

Source Field Data Formats ... 3-86

VISION:Report Supplied Patterns and Attributes .. 3-88

MOVEXPD... 3-90

MOVNUM ... 3-91

MOVZON.. 3-92

MSHIFT.. 3-93

MULT ... 3-94

OPEN.. 3-95

OPTION ... 3-97

Summary of Job Options... 3-98

VISION:Report OPTION Keywords ... 3-102

OR (Logical OR) ... 3-118

PAGETOTALS .. 3-119

PAGEWIDTH ... 3-120

PERFORM .. 3-120

PRINT .. 3-121

PRINT REPORT ... 3-122

PRINTCHAR .. 3-124

PRINTHEX.. 3-125

PUNCH... 3-126

READ... 3-127

vi VISION:Report Reference Guide

RELEASE..3-128

REPORT...3-129

RETURN ..3-132

REWRITE (VSAM Only) ..3-134

REWRITE (ISAM Only) ...3-135

SAMPLE ..3-136

SET ...3-137

SET PCC...3-139

SETGENKEY (VSAM Only) ...3-141

SETGENKEY (ISAM Only) ..3-142

SKIP ..3-144

Sorting ..3-145

SORT Fields ...3-147

SORT AREA ...3-149

SRTADJ Option ..3-151

SORT FILE...3-153

ADDITIONAL SORT OPTIONS ...3-155

SUB ...3-156

TABLSORT ..3-158

TABLSPEC ..3-160

User Data Tables ...3-162

Advanced Techniques for Referencing Tables ...3-166

Referencing Hit Entries Following an IF...ONTABLE.......................................3-166

Indexing Through the Table ...3-167

TCLOSE (VSAM ONLY) ..3-169

TITLE/TITLE2/TITLE n ..3-170

TRACE ..3-172

TRAN ...3-175

TRNT ...3-176

WHEN ..3-177

WRITE ..3-181

XOR (Logical XOR) ...3-183

Chapter 4: Examples

Examples ..4-1

JCL Examples ..4-3

Example 1 ...4-6

Load/Copy Tape to Disk..4-6

Contents vii

Example 2... 4-8

Copy Card File to Two Tape Files, One Blocked and Standard Label, One Unblocked
and Unlabeled ... 4-8

Example 3.. 4-11

Variable Disk Input, Variable Tape Output .. 4-11

Example 4.. 4-13

Variable Record Output, Table Lookup, Indexing, PRINTHEX Variable, PERFORM,
HDR, OPTION STMTEND... 4-13

Example 5.. 4-15

Create AR VSAM KSDS File Using Native VSAM from Sequential Disk,
Sort File in Building VSAM Key .. 4-15

Example 6.. 4-17

Concatenate Two Undefined Record Files into One Undefined Output File................... 4-17

Example 7.. 4-19

File Maintenance or File Matching .. 4-19

Example 8.. 4-21

Table Lookup, Range Checking, Negative Field Testing..................................... 4-21

Example 9.. 4-23

Multiple Tables, Alphanumeric Checking ... 4-23

Example 10... 4-25

Table Data for Repricing ... 4-25

Example 11... 4-27

Accumulating Amounts in a Table, Print at EOJ.. 4-27

Example 12... 4-29

Dynamically Create and Sort a Table, Accumulate, and Print at EOJ 4-29

Example 13... 4-30

Table Load, TABLSORT, Print Various Sequences, Multiple HDR,
and Various OPTION Parameter Overrides ... 4-30

Example 14... 4-34

Native VSAM Using GET, QUIKIPDS/QUIKINCL, REPORT, SORT AREA with
RELEASE/RETURN, DISPLAY, CALL to QUIKDATE 4-34

Example 15... 4-37

Additional Working Storage and QUIKVSAM, Using OPTION, POINT, GET-UPD, ERASE,
and MOVE with Quotes ... 4-37

Example 16... 4-41

TABLSPEC, Indexing, Table ACCUM, BREAK, Summary Output to Disk.................... 4-41

Example 17... 4-43

ACCUM Counts, Amounts Using CTR-NO, BREAK, CHECKBREAKS, QUIKIPDS,
LIMITREADS, PAGETOTALS, REPORT, SORT, and Numerous IF Statements While Validating4-43

Example 18... 4-45

ACCUM Using CTR, BREAK, and CHECKBREAKS 4-45

viii VISION:Report Reference Guide

Example 19 ...4-48

ACCUM Using CTA-CTC, BREAK, CHECKBREAKS, and Summary Output, PUNCH4-48

Example 20 ...4-51

ACCUM, BREAK, and CHECKBREAKS...4-51

Example 21 ...4-54

ACCUM, BREAK, and CHECKBREAKS with Total Time Calculations, Multiple HDR.........4-54

Example 22 ...4-56

Amortization Schedule, Calculations, No Input/Output Files, LINECOUNT, DISPLAY,
ACCEPT, Arithmetic Operations, Multiple HDR, PERFORM/THRU.........................4-56

Example 23 ...4-65

Match Records of a Transaction File Against a Master File and Create a New Master File4-65

Example 24 ...4-66

Print Report with OMIT, SORT AREA, SRTADJ and RPTSPCE4-66

Example 25 ...4-68

Print Report Summary ...4-68

Example 26 ...4-70

SET PCC, MOVE VARIABLE LENGTH, EQU with Literals, Negative Numbers, WHEN and
WHEN/REVERSE, QUIKVSAM with Read-Upd and Update4-70

Example 27 ...4-72

Native VSAM Using GET, SET PTA, PRINTHEX ...4-72

Example 28 ...4-73

Native VSAM (RRDS) Using GET and SETGENKEY..4-73

Example 29 ...4-74

Native VSAM (RRDS) Using WRITE ..4-74

Example 30 ...4-75

Native VSAM (KSDS, RRDS, ESDS) Using Random Access, READ, ADDRECORD, REWRITE,
DELETE ..4-75

Example 31 ...4-78

Native VSAM using GET, QUIKIPDS, WHEN with INCLUDES/OMITS, WHEN/REVERSE,
IF...NUMERIC, IF...ALPHA, Negative IF, Multiple HDR with $names$4-78

Example 32 ...4-81

Native VSAM (ESDS) with Alternate Index, Using OPEN/CLOSE, GET, READ, SETGENKEY,
REWRITE, SET PTA ...4-81

Example 33 ...4-86

Native Variable Length VSAM (KSDS, ESDS) Using OPEN/CLOSE, GET, WRITE, SET PTA,
READ, SETGENKEY, ONERROR ...4-86

Example 34 ...4-91

QUIKVSAM (KSDS) with Alternate Index, Using OPTION, OPEN/CLOSE, LOAD, READ,
GET-UPD, READ-UPD, ADD, GET, POINT, UPDATE, ERASE..............................4-91

Example 35 ...4-97

Troubleshooting Problems... 4-97

Contents ix

Example 36... 4-98

Mixture of Native VSAM and CALL to QUIKVSAM, with Field Names Greater Than
14 Characters, and Forcing $PAGE$ to be Greater Than 6 Digits............................. 4-98

Example 37.. 4-101

Various Usages of IF (Nested IF, IF with Parentheses, IF/ELSE/ENDIF) and Bit Manipulation
Instructions (such as AND, OR, XOR, TRAN, TRNT)...................................... 4-101

Examples 38A and 38B ... 4-105

IF Statement with Test Under Mask Operands .. 4-105

Chapter 5: Troubleshooting and Memory Requirements

Troubleshooting and Memory Requirements ... 5-1

Program Check Routine .. 5-1

Reporting Problems .. 5-2

Memory Dumps ... 5-3

Storage Requirements .. 5-3

STMTS, GENSIZE, LITSIZE, and #EQU.. 5-4

Data and Table Space .. 5-4

File Sizes .. 5-4

Chapter 6: Optional Material
Optional Material .. 6-1

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only) .. 6-2

Call Format for Master File Processing ... 6-2

Call Format for Chain File Processing .. 6-6

Call Format for Closing the Files... 6-6

LIBR**** — CA-Librarian Interface Assistance (VSE Only) 6-7

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements 6-9

Optional Parameters... 6-11

Messages ... 6-12

QJCOMREG —Subroutine to Access COMREG Area (VSE Only) 6-14

QJEPRNT — List Edit Masks .. 6-15

QJERAND — Random Number Generator .. 6-15

QJJOBCOM — Subroutine to Access JOBCOM Area (VSE Only) 6-16

QJPUNINT — 3525 Punch/Interpret Subroutine (VSE Only).................................... 6-17

QUIKDATE — Date Calculation ... 6-18

QUIKDATT .. 6-18

QUIKDATE .. 6-19

QUIKDPRT — Print User Date Table ... 6-32

x VISION:Report Reference Guide

QUIKFLOP — 3540 Floppy Disk Subroutine (VSE Only)6-34

QUIKIDMS — CA-IDMS/DB Access Interface(Optional feature)6-36

QUIKILIB — CA-Librarian Interface Assistance (MVS Only)6-40

QUIKDLI — DL/I Interface (VSE Only) (Optional) QUIKIMS — IMS Interface (MVS Only)
(Optional) ..6-41

QUIKIMS and QUIKDLI Syntax ..6-42

QUIKINCL — Source Statement Library Routine (VSE Only)....................................6-46

Nested INCLUDES ..6-48

QUIKIPAN — CA-Panvalet Subroutine (MVS Only)..6-50

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)6-52

QUIKIPDS Used as a User Exit At Compilation Time6-53

QUIKIPDS Used as a Callable Subroutine At Execution Time................................6-55

QUIKISAM —MVS ISAM Subroutine ...6-57

QUIKISAM CALL Formats ...6-58

Random Retrieval ...6-58

Update ...6-58

Add or Insert..6-59

Call to Close Files..6-60

Size of Routine ..6-60

Record Formats and Space Requirements ..6-61

Exceptions and Exceptional Conditions..6-63

QUIKISAM — VSE ISAM Macro ...6-64

QUIKMOVE — Variable/Undefined Move Routine ..6-67

QUIKPDS — PDS and PDS/E Routine (MVS Only)...6-68

Opening a PDS ..6-68

Closing a PDS ...6-68

Reading a Directory Entry..6-68

Reading a Member...6-69

Updating a Member ...6-69

Checking the Return Code..6-70

Sequential Retrieval of Directory Entries...6-70

Random Retrieval of Directory Entries ..6-70

Sequential Retrieval of All Members...6-70

Generic Retrieval of Directory Entries ...6-71

Random Retrieval of a Member ...6-72

Updating a Member ...6-72

Error Messages ..6-73

QUIKRPT — Multiple Reports Processor ..6-75

QUIKRPT Call Formats ..6-75

Declarative Functions ..6-75

Imperative Functions ... 6-77

Contents xi

QUIKTABL — Automated Tabling Routine ... 6-81

Load a Table.. 6-81

Retrieve an Entry by Key — Starting at a Specified Entry Number and then Doing a
Serial Search .. 6-87

Retrieve Each Entry Starting from the Beginning... 6-88

Retrieve a Particular Entry by Entry Number .. 6-89

Binary Search for a Particular Entry by Key.. 6-90

Replace an Entry in a Table .. 6-91

Delete a Table... 6-92

User Error Checking and Handling ... 6-93

Determine the Proper Size of the Table Area... 6-95

QUIKTIME — Time Subroutine .. 6-96

QUIKTRAN — ASCII/EBCDIC Translator.. 6-97

File Data Translation Routine .. 6-97

QUIKTRNT —Translate Table (MVS Only) QUKBTRN —Translate Table (VSE Only)............. 6-98

QUIKVEQU — EQU Statements for VAL Area .. 6-98

QUKBLIB — VSE Library Interface (VSE Only) .. 6-99

Opening a Library.. 6-101

Retrieve a record... 6-102

Closing a Library... 6-104

Miscellaneous Return Codes .. 6-104

TOTAL Interface (VSE Only).. 6-105

TOTAL4 Interface.. 6-105

Chapter 7: QUIKVSAM

QUIKVSAM... 7-1

Prerequisites... 7-1

Application.. 7-2

QUIKVSAM Communication/Feedback Area Contents ... 7-4

QUIKVSAM Description ... 7-5

KSDS ... 7-5

ESDS.. 7-6

RRDS ... 7-6

QUIKVSAM Level of Support... 7-7

VSAM Function/Option.. 7-8

VSAM Share Options... 7-9

Functions .. 7-10

Add/Insert Sequential (KSDS) ... 7-10

Close Data Set (KSDS, ESDS, RRDS) .. 7-11

Close and Reopen Data Set (KSDS) ... 7-12

xii VISION:Report Reference Guide

Erase Random and Sequential (KSDS,RRDS) ...7-13

Retrieve Sequential (KSDS,ESDS) ...7-14

Retrieve Sequential for Update (KSDS, ESDS) ..7-15

Load/Insert Sequential (KSDS, ESDS) ...7-16

Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPEN7-17

Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPTION
and OPT-RESET ...7-18

Point/Generic Position (KSDS, ESDS, RRDS)...7-19

Retrieve Random (KSDS, ESDS, RRDS) ..7-21

Retrieve Random for Update (KSDS, ESDS, RRDS) ...7-22

Add/Insert Random (RRDS) ...7-23

Retrieve Sequential (RRDS)...7-24

Retrieve Sequential for Update (RRDS) ..7-25

Load/Insert Sequential (RRDS) ...7-26

Temporary Close (KSDS, ESDS, RRDS) ..7-27

Update/Change Random or Sequential (KSDS, ESDS, RRDS)7-28

Examples ...7-29

Example 1 — Define (using AMS) and Load a Variable Length Record VSAM Data Set7-29

Example 2 — Copy a VSAM Data Set to Tape ..7-30

Example 3 — Load VSAM Data Set with Fixed Length Records..............................7-31

Example 4 — Retrieve Records Sequentially for UPDATE or ERASE7-33

Example 5 — Random/Sequential Retrieve with UPDATE and ADD7-34

Example 6 — Point and Sequential Retrieval ...7-36

Example 7 — Sequential Retrieval with BREAKS, Accumulative Reporting,
and Dummy INF Input...7-37

Appendix A: Invoking VISION:Report from VISION:Results or
VISION:Eighty

DYLQKIMS... A-2

MVS JCL ... A-2

VSE JCL .. A-3

Basic VISION:Report Program.. A-3

VISION:Report MVS JCL with CA-IDMS/DB.. A-4

A Typical VISION:Report Program to Call CA-IDMS/DB Functions A-5

VISION:Report MVS JCL with IMS ... A-7

A Typical VISION:Report Program to Call IMS Functions....................................... A-8

Index

Contents xiii

Chapter

1
Introduction

VISION:Report® is an easy-to-use program development and report writing tool
that you use to build and execute programs, minimizing the amount of
programming time and effort required to fix a file, prepare a report, or generate
test data.

There is virtually no limit to the types of reports VISION:Report can create.
Preprinted forms, memos, letters, and labels are handled with ease. Arithmetic
operations are provided with automatic decimal alignment and rounding, but
you can override these features at any time. You can produce up to eight reports
in one program. VISION:Report also supports European format for numeric
printing.

VISION:Report uses a straightforward, self-documenting, COBOL-like
language. First time users can be up and running after less than eight hours of
training. In addition, because VISION:Report requires you to define only those
fields to be used, time-consuming COBOL file definition activity is eliminated.

VISION:Report also allows you to save file definitions and program source
statements in CA-Librarian®, CA-Panvalet®, PDS, or other source statement
libraries to be shared by other programs, avoiding duplicate programming
work. Character, zoned, decimal, packed, binary, and unconventional data
types are supported. In addition, you can validate programs prior to their
execution.

One common language means that VISION:Report is easier to learn and manage
than several individually sold utilities. You can accomplish everything from file
comparison and format conversions to testing, debugging, and prototyping
using VISION:Report.

Using VISION:Report, you have the option to access, retrieve, update, and
report on data from VSAM, sequential, and optionally:

■ Computer Associates CA-IDMS/DB®

■ IBM®

■ DB2® and SQL/DS

■ IMS and DL/I

Introduction 1–1

About This Guide

Also, a CALL verb is available to access callable databases. To enhance file
access, VISION:Report:

■ Internally reads OS/390®-partitioned data sets, CA-Librarian and CA-
Panvalet libraries.

■ Provides a CALL command for invoking subroutines written in Assembler
or COBOL.

■ Allows literals to be used as parameters in a CALL statement.

VISION:Report performs multiple functions with just one pass of the database.
Conditional record selection, sorting, translating, matching, and merging can all
occur with only one read of the master file. For further efficiency,
VISION:Report also:

■ Handles internal sorts in one statement.

■ Releases and returns records from SORT in one easy step.

■ Accepts compound conditional IF statements, allowing for complex data
selection.

■ Allows conditional branching.

VISION:Report operates under z/OS, OS/390, MVS/SP/XA/ESA,
VSE/SP/ESA, and VM/CMS.

Note: Throughout this document, MVS is synonymous with z/OS and OS/390,
unless specified differently.

About This Guide
This guide covers the fundamental principles of VISION:Report.

Chapter Description

1. Introduction Contains an introduction to VISION:Report and
describes this guide.

2. File Specifications and
Data Definitions

Describes file specifications and data definitions,
including literals, data areas, file availability, field
definitions, named accumulators, VSAM support,
VSE and MVS considerations, database files, and
user abend codes.

3. Statement Format Describes the syntax for all of the VISION:Report
commands and keywords.

1–2 VISION:Report Reference Guide

Contacting Computer Associates

Chapter Description

4. Examples Contains extensive examples of VISION:Report
features.

5. Troubleshooting and
Memory Requirements

Describes troubleshooting tips, memory
requirements, and debugging facilities. This chapter
also contains information about program checks and
how to report a problem to Technical Support.

6. Optional Material Describes the VISION:Report optional features,
including a random number generator, date and
time subroutines, table editors, a multiple report
processor, and various subroutines and interfaces.

7. QUIKVSAM Describes QUIKVSAM, which provides you with
native mode access to VSAM data sets (files),
enabling you to support commonly used VSAM
functions with the minimum of effort.

Appendix A, Invoking
VISION:Report from
VISION:Results or
VISION:Eighty

Describes how to invoke stand-alone VISION:Report
applications and VISION:Report applications that
access IMS or CA-IDMS/DB databases from your
VISION:Results™ or VISION:Eighty™ program.

Contacting Computer Associates
For technical assistance with this product, contact Computer Associates
Technical Support on the Internet at http://esupport.ca.com/. Technical
support is available 24 hours a day, 7 days a week.

Introduction 1–3

Chapter

2
File Specifications and Data
Definitions

Statement Format and Sequence
The following VSE file specification formats are fixed form. Layout
specifications are included in this section for each statement.

File Specification Format Description

INF Define first input file

DET Define second input file

INC Define third input file

IND Define fourth input file

INA, INB, INE, ING - INZ Define additional input files

OFA - OFZ Define output files

All other VISION:Report statements are free-form within the following rules:

■ Sequence Numbers

 Positions 1-3 or 1-4 must contain a sequence number when the option
SEQCHK=YES is in effect (see the section OPTION, in Chapter 3). If the
SEQCHK=NO option is in effect, a sequence number is not required except
on statements that are the subjects of the GOTO and PERFORM transfer
statements. The SEQCHK=NO option allows you to start a statement
anywhere from column 1 to 30, except for HDR which must start in column
5.

■ When the SEQCHK=NO option is in effect, VISION:Report assumes all
statements without sequence numbers have a sequence number of 000.
Therefore, a GOTO 000 produces unpredictable results.

■ A statement may contain only a sequence number, without anything else
coded on the statement, except that the sequence number of the EXIT
statement must be on the same card.

File Specifications and Data Definitions 2–1

Statement Format and Sequence

 Another available option is STMTEND=nn. This allows sequence
numbering on the right side of all statements. It does not eliminate the need
for VISION:Report sequence numbers on the left side of the statement. See
the section OPTION, in Chapter 3 for further explanation.

■ All words following the statement are free-form, but must be present and in
the correct sequence. Optional words such as NOT and OR in the IF
statement are specifically identified as optional.

■ Only one verb per statement is allowed and each statement must be
completely contained on one line, except as noted below. The following
sequence is valid:

020 IF INF7-10-P IS NUMERIC

030 GO TO 060.

The following statement is invalid.

020 IF INF7-10-P IS NUMERIC GO TO 060.

You can continue these verbs on additional lines without the use of a non-blank
character in the continuation column.

VERBS

ACCUM HEXEXPD OR

ADD IF PRINT

AND MOVCOND REPORT

BREAK MOVE SORT

CALL MOVEXPD SUB

CONDATE MOVNUM TRAN

DIVD MOVZON TRNT

EXDATE MSHIFT XOR

HEXCOND MULT

■ Blank lines are permitted in order to separate statements into logical groups
such as: equates, declaratives or executables.

■ Sequence numbers (or labels) serve as transfer points. A label can appear on
a line by itself, except when you use it to identify the EXIT verb. For
example:

PERFORM 30 THRU 40

 .

 .

 .

30 /* No verb on this line

 MOVE ABC TO DEF /* This will be performed first

 MOVE GHI TO JKL /* This will be performed second

40 EXIT /* Label must be on same line

2–2 VISION:Report Reference Guide

Literals

■ You can insert comments in several ways:

■ Use sequence numbers (or labels) followed by an asterisk and the
comments on the rest of the statement. SEQCHK option is immaterial.

You can place an asterisk in any position; comments then follow.

■ After the statement, leave at least one space followed by '/* '; the rest of
the statement is a comment.

The STMTEND option dictates the end of one statement and if there is a
continuation statement. For simplicity, end a comment before the specified
STMTEND.

Following are some examples:

1* THIS IS A COMMENT

30 /* THIS IS A COMMENT

100* THIS IS A COMMENT

120 * THIS IS A COMMENT

1000* THIS IS A COMMENT

1050 *THIS IS A COMMENT

 *THIS IS ANOTHER COMMENT

 * THIS IS ANOTHER COMMENT

 * THIS IS ANOTHER COMMENT

 /* THIS IS ANOTHER COMMENT

 /* THIS IS ANOTHER COMMENT

1100 GET INF /* COMMENT ON A LINE

1200 MOVE A TO B/* THIS IS AN INVALID STATEMENT

Literals
Literals are valid for most statements. See each verb for the valid forms. You
can use embedded quotation marks in character literals. C'''180''' generates '180'.

Data Areas
All data fields have a maximum of 15 digits. For example, specify a field as
WST000000000000001-000002147483648, giving you a wide range of
addressability. The practical limit is 10 digits because the largest size of
contiguous storage obtained from the operating system is 2G.

The practical limit for input and output file areas is 5 digits because this
contains the maximum record size recognized by the operating system.

File Specifications and Data Definitions 2–3

Data Areas

Input data is available in fixed areas and is written from fixed areas. These areas
are customized to the appropriate length based on record lengths supplied in
the INx, DET, and OFx statements (VSE) or based on the record lengths
obtained from the data sets and/or DD statements (MVS). The following areas
are available to you:

Area Description

CTA-CTP Sixteen accumulators (each is 8 bytes, packed decimal and is
initialized to zeros). There are ten sets of the accumulators —
one set for each of the nine possible total levels, plus one set
for grand totals. Each accumulator is addressable.

DET A GET DET statement causes the next logical record of the
second input file to be made available to you in this area.

FUN A 100-byte function area. If you code an IF...ONTABLE
statement, the found function is placed in this area when a
match is made against the table. FUN contains the function
portion of the table entry only. It does not contain the
argument.

HDx Printer header areas (HDA through HDF). These areas are
used to store the HDR statements.

INA-INZ
DET

A GET INx statement causes the next logical record of the
current input file to be made available to you in this area.
Note that you do not need to specify the input files in
alphabetical order (that is, INA does not have to be specified
before IND, and so forth).

LCT A 2-byte packed number of the print lines available for use on
the current page.

OFA-OFZ Output area for the OFx output file. Assemble the output
record in this area by using MOVE verbs prior to issuing a
WRITE OFx statement. In VSE, the contents of the OFx areas
are not available for use after a WRITE statement is issued. A
form of PUT LOCATE mode output is used; a WRITE
statement causes the output pointer to be advanced to the
next record and/or to the next block.

In MVS, the output area is still available after the WRITE
statement. PUT MOVE processing is used. Note that you do
not need to specify the output files in alphabetical order (that
is, OFA does not have to be specified before OFD, and so
forth).

PCB IMS-DL/I PCB. When used by IMS-DL/I at entry to
VISION:Report, PCB is initialized with the pointer (or
address) to the first PCB.

2–4 VISION:Report Reference Guide

Data Areas

Area Description

PNR A 4-byte packed number of the page number currently being
printed. This is also referred to in an HDR statement as PG.

PRT A position area, limited by the OPTION PRTSIZE, that is
written to the printer by the symbolic unit SYSLST (VSE) or
ddname SYSPRINT (MVS).

PTA-PTH
PTR

Generalized pointers for variable address indexing.

PUN An 80-position area that is written to the punch by the
symbolic unit SYSPCH (VSE) or ddname SYSPUNCH (MVS).

SAV An area generally used for working storage. The size of this
area is specified by the value of SAVAREA (see the section
OPTION, in Chapter 3). VISION:Report initializes this area to
binary zeroes (HEX 00).

TBH Table hit address.

TSA Table start address. On all subsequent calls to QUIKIMS, it
will contain the pointer to the PCBnn requested in the
QUIKIMS call.

VAL A value communications area. See VAL Area. Briefly, the
VAL area is where the IPL date and its variation are made
available to you. UPSI bit settings are expanded and
presented in a F1 (on) and F0 (off) manner for VSE users.
Within the VAL area, VISION:Report provides various
combinations such as the IPL date, time of day, PARM date
and return codes.

WST An area of memory available to you for working storage. This
area can be used to contain such items as, indicators,
accumulators and working areas. The size of this area is
determined by the value of WSTSIZE (see the section
OPTION, in Chapter 3). VISION:Report initializes this area to
binary zeros (hex 00).

All references to data fields are made by coding an AREA/POSITIONS
description that comprises a field definition. (See Field Definition.)

File Specifications and Data Definitions 2–5

Data Areas

VAL Area

The value communications area contains the following values. Access is by the
VAL area (such as, VAL1-4-P). (See the section EQU, in Chapter 3 for default
equates to the VAL area.)

Position Format Contents

1-4 Packed Decimal Length of last record read from an undefined
file (UNDEF). You may create or modify this
value for output to UNDEF files. On WRITE to
UNDEF files, you must define the desired
block size here. If LRECL=X, this field, if
output, is binary.

5-12 EBCDIC IPL date as obtained from the VSE
communication region: DD/MM/YY or
MM/DD/YY.

If there is a // DATE JCL statement, the date
will not be the IPL date, but the date on the
JCL statement. At end of job (/&), the system
will automatically reset the date back to the
IPL date.

13-21 EBCDIC IPL month in full English spelling.

22-29 EBCDIC The 8 VSE UPSI bits expanded to 1 byte per bit.
A binary 0 bit converts to X'F0'; a binary 1 bit
converts to X'F1'. In the MVS version, this field
contains the first 8 bytes of PARM=information
from the EXEC statement. If less than 8 bytes
are present, the remainder of this field contains
EBCDIC zeros.

30-37 Packed Decimal Divide remainder after execution of DIVD
statements.

38-45 EBCDIC Job name from JOB statement.

46-49 EBCDIC Step return code at EOJ (initialized to zeros).
Also, this is the return code from the last
CALL made.

50-55 EBCDIC Date, MMDDYY.

56-61 EBCDIC Date, YYMMDD.

62-66 EBCDIC Time, HH:MM

67-70 EBCDIC User ABEND code used with ABEND verb
(initialized to 4095).

2–6 VISION:Report Reference Guide

Data Areas

Position Format Contents

71-75 EBCDIC Julian date YYDDD. In VSE, the date is the IPL
date obtained from the VSE Communications
Region and also reflects a date changed by any
// DATE JCL statement.

Positions 76-179 for MVS contain the following:

76-77 Binary Byte count contained in the data portion of the
PARM= parameter of the EXEC statement.

78-177 EBCDIC As many bytes of PARM information as
specified in positions 76-77 (up to 100 bytes).

178-179 Reserved.

Positions 76-179 for VSE contain the following:

Note: See the section OPTION, in Chapter 3, PARMEXE keyword. If
PARMEXE = YES, VAL 76-179 is the same as for MVS above.

76-77 Reserved.

78-88 EBCDIC VSE COMREG user area. (11 bytes from
positions 12-22 of the partition communication
region.) These contents are also in VAL 261-
271, regardless of option.

89-179 Reserved.

Positions 180-239 for VSE and MVS contain the following:

180 EBCDIC The level number of the present break or totals.
F1 through F9 for levels one through nine and
F (X'C6') for the final totals.

181 EBCDIC This position serves as an indication of
whether or not you want to suppress spacing
and printing for a given level of totals.
VISION:Report initializes to a space (X'40').

You should place an N (X'D5') here to cause
VISION:Report to suppress spacing, suppress
moving the totals for current level to print, and
suppress printing current total levels. The
totals for a given level are rolled to the next
level and the present level is zeroed regardless
of this indicator’s setting.

File Specifications and Data Definitions 2–7

Data Areas

Position Format Contents

182 EBCDIC This position serves as an indicator for page
eject. For example, if you want to do
something with the accumulators for a given
level other than print (such as, write to tape,
disk), or you may wish to force a new set of
headings on the printer.

VISION:Report initializes to a space (X'40'). If
you place an E (X'C5') here, VISION:Report
forces a new set of headings before processing
the next total level and/or exiting from the
totals processing section.

183-195 Reserved.

196 EBCDIC Set to EBCDIC E (X'C5') when INF reaches
physical end of file.

197 EBCDIC Set to EBCDIC E (X'C5') when DET reaches
physical end of file.

198 EBCDIC Set to EBCDIC E (X'C5') when INC reaches
physical end of file.

199 EBCDIC Set to EBCDIC E (X'C5') when IND reaches
physical end of file.

For other input files, see VAL Area, VAL415
and up.

200 EBCDIC Set to EBCDIC E (X'C5') when SORT EOF (last
record) has been resumed using the SORT-
AREA-RETURN feature.

201-204 Binary You must place record length here (when
using SORT with Area-V option) prior to
RELEASE.

205-208 Binary Contains the length (bytes) of the last
phase/module called or loaded by you.

209-222 Reserved.

223 Binary Contains the condition code returned from bits
18-19 of the PSW following an AND, OR, or
XOR operation.

224 Binary Contains the non-zero function byte returned
following a TRNT operation.

225-228 Binary The number of bytes scanned on a true
condition in a WHEN or TRNT statement.

2–8 VISION:Report Reference Guide

Data Areas

Position Format Contents

229-231 EBCDIC Contains the name of the last file on which an
I/O operation was performed.

232-235 Binary Contains the record count of the last file on
which an I/O operation was performed.

236-239 Binary Contains the DTF or DCB memory address of
the last file on which an I/O operation was
performed.

Positions 240-259 contain feedback information for the last VSAM statement
processed:

240 EBCDIC VSAM file type:

K = KSDS L = LDS
E = ESDS
R = RRDS

241 EBCDIC VSAM access type:

C = CLUSTER
P = PATH
X = ALTERNATE INDEX

242 Reserved.

243-246 Binary Record length of the record last retrieved or
updated.

247 Binary VSAM return code (RC).

248 Binary VSAM error code (EC).

File Specifications and Data Definitions 2–9

Data Areas

Position Format Contents

If Option VSAMER = NO, Positions 249-260 are defined as follows:

249-252 Binary VSAM RBA (relative byte address) of record
last retrieved or updated.

253-255 EBCDIC VSAM error word. Contains certain
VISION:Report VSAM errors (RC,EC).
Contents are as follows:

OK Last VSAM statement processed OK

RNF Record not found

DUP Duplicate record

SEQ Record out of sequence

EOF End of file

ERR RC/EC is not VISION:Report
decodable

256-260 Reserved.

If Option VSAMER = YES, Positions 249-260 are defined as follows:

249-256 Binary VSAM XRBA (relative byte address) of record
last retrieved or updated.

257-259 EBCDIC VSAM error word. Contains certain
VISION:Report VSAM errors (RC,EC).
Contents are as follows:

OK Last VSAM statement processed OK

RNF Record not found

DUP Duplicate record

SEQ Record out of sequence

EOF End of file

ERR RC/EC is not VISION:Report
decodable

260 Reserved.

261-271 EBCDIC VSE COMREG user area. (11 bytes from
positions 12-22 of the partition communication
region.) Same as VAL78-88. See the section
OPTION, in Chapter 3, PARMEXE keyword.

272 Reserved

273-280 EBCDIC Constant of 'SQLCA '.

2–10 VISION:Report Reference Guide

Data Areas

Position Format Contents

281-284 Binary Contains length of SQLCA (136).

285-288 Binary DB2 or SQL/DS Return Code

■ If 0, successful execution, although there
might have been warning messages.

■ If positive, successful execution but with an
exception condition.

■ If negative, error condition.

289-290 Binary Tokenized error message; length range 0-70.

291-360 EBCDIC Tokenized error message; contains one or more
tokens, separated by X'FF'. Length of this field
is variable, with a maximum of 70.

361-368 EBCDIC Product signature; if error, diagnostic
information such as the name of the module
that detected the error. In all cases, the first
three characters are DSN for DB2 or ARI for
SQL/DS.

369-372 Binary Internal Relational Data System Code.

373-376 Binary Internal Data Manager Error Code.

377-380 Binary Number of rows altered by
insert/update/delete.

381-384 Binary Diagnostic information.

385-388 Binary Diagnostic information.

389-392 Binary Diagnostic information.

The warning flag indicators below contain a blank if no error condition exists;
otherwise, they contain a "W" to indicate a warning or an error has occurred.

Position Format Contents

393 EBCDIC Warning Flag Indicator 0; "W" if any other
warning flags (1-7) contain a 'W'.

394 EBCDIC Warning Flag Indicator 1; "W" if value of a
string column was truncated when assigned to
a host variable.

395 EBCDIC Warning Flag Indicator 2; "W" if null values
were eliminated from the argument of a
column function.

File Specifications and Data Definitions 2–11

Data Areas

Position Format Contents

396 EBCDIC Warning Flag Indicator 3; "W" if the number of
columns is larger than the number of host
variables.

397 EBCDIC Warning Flag Indicator 4; "W" if a prepared
UPDATE or DELETE statement does not
include a WHERE clause.

398 EBCDIC Warning Flag Indicator 5; "W" if the SQL
statement was not executed because it is not a
valid SQL/DS statement.

399 EBCDIC Warning Flag Indicator 6; "W" if addition of a
month or year duration to a DATE or
TIMESTAMP results in an invalid day.

400 EBCDIC Warning Flag Indicator 7; "W" if one or more
non-zero digits were eliminated from the
fractional part of a number used as the
operand of a multiply or divide.

401 EBCDIC Warning Flag Indicator 8; "W" if a character
that could not be converted was replaced with
a substitute character.

402 EBCDIC Warning Flag Indicator 9; "W" if arithmetic
exceptions were ignored during COUNT
DISTINCT processing.

403 EBCDIC Warning Flag Indicator A; "W" if a character
conversion error occurred while filling the
SQLCA. Indicates that at least one character
field contains an invalid code point. If all
character fields are valid, this is blank.

404-408 EBCDIC Return code for the outcome of the most recent
execution of an SQL statement. The range is
00000 through 65535.

2–12 VISION:Report Reference Guide

Data Areas

Position Format Contents

409-410 Binary Last DB2 or SQL/DS function when error
occurred.

 0 - Execute Immediate
1 - Prepare
2 - Open
3 - Fetch
4 - Close
5 - Execute
6 - Update Current
7 - Delete Current
8 - Commit Work
9 - Rollback Work
10 - Connect TO
11 - Connect
12 - Set CURRENT PACKAGESET
13 - Set SQLID = :host
14 - Set :host = CURRENT TIMEZONE
15 - Set :host = CURRENT TIMESTAMP
16 - Set :host = CURRENT TIME
17 - Set :host = SQLID
18 - Set :host = CURRENT SERVER
19 - Set :host = CURRENT PACKAGESET
20 - Set :host = CURRENT DATE

411-414 EBCDIC 4-digit year (YYYY)

415 EBCDIC Set to EBCDIC E (X’C5’) when INA reaches
physical end of file.

416 EBCDIC Set to EBCDIC E (X’C5’) when INB reaches
physical end of file.

417 EBCDIC Set to EBCDIC E (X’C5’) when INE reaches
physical end of file.

418 EBCDIC Set to EBCDIC E (X’C5’) when ING reaches
physical end of file.

419 EBCDIC Set to EBCDIC E (X’C5’) when INH reaches
physical end of file.

420 EBCDIC Set to EBCDIC E (X’C5’) when INI reaches
physical end of file.

421 EBCDIC Set to EBCDIC E (X’C5’) when INJ reaches
physical end of file.

422 EBCDIC Set to EBCDIC E (X’C5’) when INK reaches
physical end of file.

File Specifications and Data Definitions 2–13

Data Areas

Position Format Contents

423 EBCDIC Set to EBCDIC E (X’C5’) when INL reaches
physical end of file.

424 EBCDIC Set to EBCDIC E (X’C5’) when INM reaches
physical end of file.

425 EBCDIC Set to EBCDIC E (X’C5’) when INN reaches
physical end of file.

426 EBCDIC Set to EBCDIC E (X’C5’) when INO reaches
physical end of file.

427 EBCDIC Set to EBCDIC E (X’C5’) when INP reaches
physical end of file.

428 EBCDIC Set to EBCDIC E (X’C5’) when INQ reaches
physical end of file.

429 EBCDIC Set to EBCDIC E (X’C5’) when INR reaches
physical end of file.

430 EBCDIC Set to EBCDIC E (X’C5’) when INS reaches
physical end of file.

431 EBCDIC Set to EBCDIC E (X’C5’) when INT reaches
physical end of file.

432 EBCDIC Set to EBCDIC E (X’C5’) when INU reaches
physical end of file.

433 EBCDIC Set to EBCDIC E (X’C5’) when INV reaches
physical end of file.

434 EBCDIC Set to EBCDIC E (X’C5’) when INW reaches
physical end of file.

435 EBCDIC Set to EBCDIC E (X’C5’) when INX reaches
physical end of file.

436 EBCDIC Set to EBCDIC E (X’C5’) when INY reaches
physical end of file.

437 EBCDIC Set to EBCDIC E (X’C5’) when INZ reaches
physical end of file.

438-439 Binary Length of SQL message.

440-759 EBCDIC SQL error messages 1-4, each error message
being 80 bytes.

760-799 Reserved Reserved for future expansion.

2–14 VISION:Report Reference Guide

File Availability

File Availability

Term Definition

Input Twenty-seven input files are allowed by way of DET
and INA through INZ. In addition, VISION:Report
allows one table file to be loaded. If a CALL such as
QUIKIDMS (IDMS interface), QUIKIMS (IMS
interface), QUIKDLI (DL/I interface), QUIKVSAM
(VSAM), or a user-written CALL is being used, there
are no real limits to the number of input files.

Output Twenty-six output files are allowed by way of OFA
through OFZ. In addition, one printer file and one
punch file are allowed by PRT and PUN. If
QUIKVSAM, user CALL, QUIKIMS, QUIKIDMS, or
QUIKDLI, and such are used. There are no real limits
to the number of output files.

Number of Files The total number of files is limited to the I/O capacity,
which is 27 for input files and 26 for output files. This
total includes those files used in QUIKVSAM, as
QUIKVSAM uses the same table space for I/O
capacity. However, callable user written subroutines
that invoke files or databases are not included in the
I/O capacity of 53 input and output files.

Operator or System
Console

Data may be accepted from the console or displayed on
the console.

VSE Files may reside on tape (fixed, variable, or undefined)
or disk (fixed or variable). VSE VISION:Report allows
VSAM or ISAM files to be created or loaded. Generic
key capability exists for VSAM or ISAM and updating
is supported. FBA disk files and 9340/9345, 3390, 3380,
and older disk devices are supported.

Database VISION:Report supports the following databases by
using special interfaces: DB2® or SQL/DS™, DL/I®,
IMS, CA-IDMS/DB. VISION:Report also supports
ADABAS®, TOTAL®, and most other commercial
databases through CALL interfaces normally provided
by the vendor.

File Specifications and Data Definitions 2–15

Field Definition

Field Definition
A VISION:Report field definition is defined instream and is the equivalent of a
COBOL data name. A field definition consists of a concatenation of the area
name that contains the field and the FROM-TO positions of the field within that
area. A packed decimal field is indicated by the suffix -P, while a binary field is
indicated by the suffix –B, and a zoned decimal field is indicated by the suffix –
Z.

The equated data area (or fieldname) length has been expanded from 14
characters to 34 characters. This provides closer conformity to COBOL
standards as well as allow some extra characters, such as a dash (-), to be used
as separators.

Field Definition Examples

Example Description

INF7-10 Positions 7 through 10 of the INF input record.

DET7-10 Positions 7 through 10 of the DET input record.

OFK9940-10039 Positions 9940 through 10039 of the OFK output
record.

INZ11001 Position 11001 of the INZ input record.

INF11-13-P A packed field in positions 11 through 13 of the INF
input record.

UNIT-PRICE An equated data area—see the section EQU, in Chapter
3.

ARFILE-INPUT-UNIT-
PRICE

An equated data area—see the section EQU, in Chapter
3.

PNR1-4-P Page number field.

AMOUNT An equated data area—see the section EQU, in Chapter
3.

PRT76-79 Printer positions 76-79.

PRT76 2C Definition of the starting or the leftmost position to
edit a field in the printer area. The 2C produces an edit
mask with 2 digits to the right of the decimal and
commas inserted where appropriate.

2–16 VISION:Report Reference Guide

Field Definition

Example Description

PRT76 2E Same as PRT76 2C, except that European-type
punctuation is generated. Commas are used to denote
decimal positions and periods are used to separate
thousands.

WST1-4-B Positions 1 through 4 of working storage, binary
format.

WST1-4 Positions 1 through 4 of working storage, EBCDIC
format.

WST9500-10500 Positions 9500 through 10500 of working storage,
EBCDIC format.

TSA1-65 Positions 1 through 65 of table entry currently pointed
to by the TSA (table start address) pointer.

PTA5-7-P Positions 5 through 7 (packed decimal) currently
pointed to by the generalized pointer PTA.

WST3-P ZEROES Position 3 of working storage, packed format,
initialized to zeros.

Note: Only significant digits must be coded and a one-position field requires no
TO element.

VISION:Report can accept values up to 15 characters long in field definitions.
However, files (DET, INA-INZ, and OFA-OFZ) are limited to a system-
restricted 32K (5 digits) maximum, and storage areas (SAV,WST) are limited to
a system-restricted 2G (10 digits) maximum. For example, you can directly
specify:

MOVE DET9000-12000 TOOFA25000

EQU AR-LAST-NAME WST2115483633-2115483747

Leading zeros are not required, but will be accepted if present.

File Specifications and Data Definitions 2–17

Field Definitions and Sizes

Field Definitions and Sizes

Field Type Short Length Range Comments

Character C 1-nnnnnnnnnn characters Up to 2 gigabytes
addressable

Zoned Z 1-15 Digits Zoned Decimal

Packed P 1-10 Digits Packed Decimal

Binary B 1-8 Hex Values Signed

Named Accumulators CTA Through CTP
There are ten sets of accumulators — one set for each of the nine possible total
levels, plus one set for grand totals.

VISION:Report has 16 accumulators, each consisting of 8 bytes, packed decimal.
All 160 accumulators are initialized to packed zeros.

Each accumulator is addressable.

Accumulator one is CTA.

Accumulator two is CTB.

Accumulator three is CTC.

 .

 .

 .

Accumulator sixteen is CTP.

Each set of the accumulators is prefixed with 26 bytes of VISION:Report internal
control information.

CONTROL C
T
A

C
T
B

C
T
C

C
T
D

C
T
E

C
T
F

C
T
G

C
T
H

C
T
I

C
T
J

C
T
K

C
T
L

C
T
M

C
T
N

C
T
O

C
T
P

1

2

3

4

5

2–18 VISION:Report Reference Guide

VSAM Support

CONTROL C
T
A

C
T
B

C
T
C

C
T
D

C
T
E

C
T
F

C
T
G

C
T
H

C
T
I

C
T
J

C
T
K

C
T
L

C
T
M

C
T
N

C
T
O

C
T
P

6

7

8

9

10

The previous described memory is contiguous from the control information for
level one through the last or eighth byte of CTP of the grand or final totals.

The accumulators and their control information occupy 1540 memory positions
 — ((16 * 8) + 26) * 10.

The accumulators' addresses are set to point to level one or the minor level
accumulators at all times when control is outside your total level subroutine.

Any VISION:Report verb may reference the accumulators. But, VISION:Report
treats the individual accumulators as 8 byte, packed decimal fields for
operations such as rolling, clearing and editing to the printer.

To direct VISION:Report to use less than 8 bytes of an accumulator, always use
the rightmost positions, such as CTA4-8-P and CTA7-8-P.

If the furthermost left positions are used, a data exception can occur and/or
there could be no sign in the units position. The sign is treated as data and is
invalid. In addition, the magnitude of the data will be out of context.

VSAM Support
VSAM functions are supported with calls to QUIKVSAM (see for further
details) or with native VSAM functions.

QUIKVSAM and native VSAM functions can now be coded together in the same
program.

Using native VSAM functions, you can read sequentially, read randomly, add,
change, or delete VSAM records using VISION:Report statements. The
following is a list of verbs that provide VSAM support:

File Specifications and Data Definitions 2–19

VSAM Support

VERBS

OPEN CLOSE GET

WRITE REWRITE SETGENKEY

READ DELETE ADDRECORD

TCLOSE CLOSER

The following are prerequisites to using any of the above verbs on VSAM files:

■ A system generated with VSAM support.

■ VSAM and AMS modules in the appropriate library.

■ A master and/or user catalog.

■ Any VSAM file (cluster, path, or alternate index) referenced must have been
defined using AMS (IDCAMS).

■ A partition/region size large enough to accommodate VISION:Report and
VSAM routines (usually 512K or larger).

Although VISION:Report does extensive validation, it is not possible to validate
everything. You must be responsible for such items as the data integrity, valid
record lengths and inclusion of keys where required. Any and all violations
detected by VSAM have the appropriate return/error codes (RC/EC) set in
VAL247-248. Do not check the RC/EC together for zeros, but individually, as a
non-zero return code may not necessarily be invalid, but only informational in
nature. VISION:Report handles the errors in one of the following ways:

If the ONERROR operand was not used:

■ The error is not VISION:Report decodable. An error message is printed and
the job is canceled. You should refer to the appropriate manuals for
explanation of the error.

■ The decoded error word is placed in VAL253-255 or VAL257-259 and
execution continues with the next statement. It is your responsibility to
check for any and all errors.

If the ONERROR operand was used:

■ The VSAM error word in VAL253-255 or VAL257-259 is set to either the
decoded word or ERR when the error is not VISION:Report decodable. It is
your responsibility to check for any errors. The VISION:Report decodable
errors for VAL253-255 or VAL257-259 are described in VAL Area.

2–20 VISION:Report Reference Guide

VSAM Support

VSAM Recommendations

The following recommendations are applicable to VSAM usage.

All VSAM Files

When a file is defined, VSAM considers it empty until a load operation (WRITE)
is processed. Errors occur on all the VSAM supporting verbs (except WRITE)
until this load operation has been processed.

The record length (VSE only) on the file specifications statements must contain
the maximum record size defined in the VSAM catalog for the VSAM file being
used.

The file I/O area contains high values (X'FF') when end-of-data is reached or on
a record-not-found condition.

You must supply the record length on the WRITE, REWRITE, and
ADDRECORD commands.

■ You can examine the length of the record in VAL243-246-B after the record
has been retrieved and before another VSAM supporting verb is executed.

■ Another technique simply sets a pointer to the 4-byte length field prior to
the statement referencing it.

 SET PTA INF1 /* Point PTA to first position of INF

 SET PTA DOWN 4 /* PTA now points to length field

 030 MOVE P'80' TO PTA1-4-B /* Move in the length

Examine the length field:

 030 IF PTAl-4-B EQ X'00000050' /* Examine it

If the record size is less than 32K, you may set the pointer down 2 and examine
the 2-byte field.

■ Rather than set PTx and then set it down every time, use the following
technique once at the beginning of your VISION:Report program:

 OPEN INF /* Open the file for an I/O area

 SET PTA INF1 /* Point PTA to first position of INF

 SET PTA DOWN 4 /* PTA now points to length field

 040 SET PTA SAVE /* Save PTA if it has other uses

 .

 .

 .

 200 SET PTA RESTORE /* Restore PTA if it has other uses

 210 MOVE P'80' TO PTAl-4-B /* Move in the length

If PTx is dedicated to pointing at the length field only, statements 040 and 200
are not necessary. If you need to SAVE and RESTORE a pointer, either do not
alter it (remember that there is only one save area per pointer) or save it to and
restore it from an area in working storage.

File Specifications and Data Definitions 2–21

VSAM Support

KSDS Files

Record lengths may be changed using the REWRITE verb, but the key of the
record cannot be changed, and the records must adhere to specifications as they
are defined in the catalog.

A record may be deleted. The only requirement is that it must have been
retrieved.

Note: For MVS only, the VSAM RBA returned can be 4 bytes for a non-
extended format file or 8 bytes for an extended format file. See the VSAMER
keyword in the OPTION section in Chapter 3. If VSAMER=YES, the VSAM
error word is located 4 bytes to the right of the default location allowing the
display of the 8-byte RBA.

ESDS Files

Any random access to one of these files requires a key as noted by the VSAM
verbs. The key of an ESDS VSAM file is the RBA (relative byte address) of the
record, and is always in 4-byte binary format. The RBA of a record just written
or retrieved is available in VAL249-252-B and in VAL249-256-B for extended
format. To view the 8-byte RBA, set Option VSAMER = YES to display the
VSAM Error String in VAL257-259.

Records may only be added to these files with the WRITE verb, and are written
in the next available entry position. The record sizes may not be changed once
they have been added to the file, and the DELETE verb is not allowed.

RRDS and VRDS Files

Any random access to one of these files requires a key as noted by the VSAM
verbs. The key of an RRDS VSAM file is the relative record number (or slot
number) and is always in 4-byte binary format. The relative record number of a
record just written or retrieved is available in VAL249-252-B.

When you are required to supply the record length or when you need to know
the length of a record, one of the following techniques may be used to access the
field that precedes the I/O area. You should exercise caution, because some of
these techniques use VISION:Report index pointers.

■ You can examine the length of the record in VAL243-246-B after the record
has been retrieved and before another VSAM supporting verb is executed.

■ Another technique simply sets a pointer to the length field prior to the
statement referencing it.

2–22 VISION:Report Reference Guide

VSAM Support

SET PTA INF1 /* Point PTA to first position of INF

SET PTA DOWN 2 /* PTA now points to length field

030 MOVE P'80' TO PTA1-2-B /* Move in the length

Examine the length field:

 030 IF PTAl-2-B EQ X'0050' /* Examine it

■ Rather than set PTx and then set it down every time, use the following
technique once at the beginning of your VISION:Report program:

 OPEN INF /* Open the file for an I/O area

 SET PTA INF1 /* Point PTA to first position of INF

 SET PTA DOWN 2 /* PTA now points to length field

 040 SET PTA SAVE /* Save PTA if it has other uses

 .

 .

 .

 200 SET PTA RESTORE /* Restore PTA if it has other uses

 210 MOVE P'80' TO PTAl-2-B /* Move in the length

Examine the length- field:

 210 IF PTAl-2-B EQ X'0050' /* Examine it

If PTx is dedicated to pointing at the length field only, statements 040 and 200
are not necessary. If you are required to SAVE and RESTORE a pointer
(remember that there is only one save area per pointer), do not alter it.

LDS Files

Any random access to one of these files requires a 4-byte word control interval
number. The control interior number of record just written is not stored. Your
program must retain this value.

File Specifications and Data Definitions 2–23

VSAM Support

VSE I/O File Parameter Statement
Positions 1-22 Are Fixed Form - Positions in 23-80 Are Free-Form

File Name 1-3

Media 4-7

Block Size
8-11

Record
Size 12-15

LBL Info 16

Symbolic Unit
17-22

Options1 23-80

INF
DET

INA-INB

INC

CARD2

TAPE Fixed length tape
TAPU Undefined length tape
TAPV Variable length tape
SD1C 2311 Disk fixed length

nnnn3 nnnn3

S=Standard
N=No Labels

SYSnnn General

BF=N4

LBL=xxxxxxx5

BS=nnnnn6
IND SD1V 2311 Disk variable length blank=Default Standard Labels RS=nnnnn7

INE

ING-INZ

OFA-OFZ

SD4C 2314 Disk fixed length
SD4V 2314 Disk variable length
SD3C 3330 Disk fixed length (Models 1 or 11)
SD3V 3330 Disk variable length (Models 1 or 11)
SD5C 3340 Disk fixed length
SD5V 3340 Disk variable length
SD6C 3350 Disk fixed length
SD6V 3350 Disk variable length
SD7C 3375 Disk fixed length
SD7V 3375 Disk variable length
DISC 3350, 3375, 3380, 3390, 9340/45 and up
 Disk fixed length
DISV 3350, 3375, 3380, 3390, 9340/45 and up
 Disk variable length
IS11 2311 Disk ISAM (INF, DET, OFA only)

Tape

TM=NO

REWIND=REWIND

REWIND=NOREWIND

REWOMD=UNLOAD

FILES=nnn8

BP=nnnn9

Output ISAM OFA Only

KLEN=nnn

 IS14 2314 Disk ISAM (INF, DET, OFA only)
IS30 3330 Disk ISAM (INF, DET, OFA only)
IS40 3340 Disk ISAM (INF, DET, OFA only)
FBAC 3330, 3370 FBA Disk fixed length
FBAV 3330, 3370 FBA Disk variable length
KSDS KSDS VSAM File
ESDS ESDS VSAM File
RRDS RRDS VSAM File
VSAM

Record size and block size specified must be the maximum that
can occur for undefined variable files.

No parameters. Information is retrieved from catalog.

KLOC= nnn

OFTRK=nn10

1. Free-form format. A valid delimiter is a space or a comma. No comments are allowed in
this field.

2. Data is read from SYSIPT, RL is 80. Positions 8-22 are ignored.

3. nnnn must be right aligned; leading zeros are optional.

4. BF=N causes no buffering for this file.

5. LBL=FILENAME causes STDLABEL track labels to be used.

6. nnnnn is a numeric value that is assigned to the BLOCKSIZE.

7. nnnnn is a numeric value that is assigned to the RECORD SIZE.

8. Multiple files may be read; maximum is 255.

9. (ASCII File) Block size must be 18-2048 bytes if BUFFER PREFIX LENGTH is specified.

10. Overflow tracks per cylinder; default is 2311-2, 2314-4, 3330-3, 3340-2.

2–24 VISION:Report Reference Guide

VSE Parameter Statements

VSE Parameter Statements

VSE I/O Parameter Statements - Examples
Position Position

1 22

INFTAPE36000080SSYS012

OFADISC40000200 SYS005

DETIS4010000100 SYS010

INFSD5Cl4000070 SYS016 LBL=SPECIAL

INFTAPE 1000SSYS011 BS=10000,REWIND=UNLOAD,LBL=OLDMAST,BF=N

INFTAPE SSYS010 BS=5000,RS=100

INFTAPE20000200SSYS010 BP=26

DETTAPV40001200NSYS011 REWIND=NOREWIND,FILES=3,TM=NO

OFBSD5C02000200 SYS005

OFAIS1432000080SSYS010 KLEN=10,KLOC=l,OFTRK=2

INFCARD

OFAKSDS 0080

INJVSAM

Accessing More Than One Input File

VISION:Report has the ability to read more than one copy of like files through
one of the input (tape only) files. When you want to read more than one file
through one of the input files, you may code FILES=nnn any place after position
22 of the I/O parameter statement for the appropriate file (nnn is the number of
files, not reels or volumes). If FILES=nnn is not used, a default of one file is
assumed. The maximum number allowed is 255.

If the number of files varies from run to run, VISION:Report counts the number
of tapes specified by the FILES= operand and quits after the number of input
tapes has been exhausted. However, a large specification (such as, 100 or 200)
can be entered for the number of tape input files and, after the last tape file has
been read, the operator can reply EOJ causing VISION:Report to recognize this
as the last tape.

VSE Input and Output Files
The VSE version of VISION:Report requires that all files being used for input or
output be defined on the VSE I/O parameter statement. For 3350 and later
devices (such as 3375, 3380, 3390, 9340/9345), use the generic media keywords
DISC or DISV in columns 4-7 of the I/O parameter statement.

File Specifications and Data Definitions 2–25

VSE Input and Output Files

VSAM files can use either the VSAM file type KSDS, ESDS or RRDS with a
record length, or VSAM without a record length, in which case, VISION:Report
obtains the file type and record length from the VSAM catalog.

VISION:Report supports up to 53 files as follows:

Files

DET Detail Input File

INA-INZ Input Files

OFA-OFZ Output Files

VSE files are defined by a single semi-fixed format I/O parameter statement.

Any tape file you define to VISION:Report must be mounted unless the JCL for
that file specifies ignore.

If the files are defined, the respective VISION:Report data areas DET, INA
through INZ, and OFA through OFZ are available for use after the file is
opened.

All file opens and closes are automatic, unless the OPEN and/or CLOSE
statements are used.

The executable I/O statements that affect data transfer are:

Statements

GET WRITE ADDRECORD

READ REWRITE DELETE

ISAM input files can be generically accessed or updated by the respective
SETGENKEY and REWRITE.

User statement references to file areas are posted and checked after all
statements have been read. A diagnostic occurs (ERR208) if a direct reference is
made to an offset in a file that is greater than the record size specified in the I/O
parameter statement.

VSAM files are supported natively. You can read sequentially or randomly, add
to, change, or delete records from VSAM files.

2–26 VISION:Report Reference Guide

VSE Input and Output Files

VSE Block/Record Size

VSE block size and record size are taken from the I/O parameter statements. An
example of a tape I/O statement follows:

INFTAPE32000080SSYS010

If the block size and/or record size is greater than four digits, leave the
appropriate positions on the VSE I/O parameter statement blank and use the
BS=nnnnn and/or RS=nnnnn options. An example follows:

INFDISC SSYS020 BS=20000,RS=200

Block size and record size are restricted to the limitations of VSE.

VSE Fixed Length Files

Fixed length input files are processed directly in the input I/O area by setting an
address pointer in the VISION:Report internal directly at the record to be
processed. This mode of operation does not require a work area and eliminates
data movement. This mode is often referred to as GET Locate.

The VSE block length specified can be larger than the actual block size on the
file, as long as the record size is divided evenly into the actual block size.

VSE drops records with no warning if a block size is specified that is smaller
than that of the file and is evenly divisible by the record.

Fixed length output files (except ISAM) are processed directly in the output I/O
area by setting an address pointer in the VISION:Report internal directly at the
next vacant record area in the I/O area.

You create the output record with one or more MOVE commands.

A WRITE OFx causes VISION:Report to write a block, if need be, and positions
the pointer to the next vacant record.

A reference to the OFx areas, after a WRITE occurs, does not point to the data or
record just written. It points to the next record area. (VSE only.)

VSE Variable Length Files

Variable length input files are processed with an I/O area, work area concept.
The I/O area is acquired dynamically based on the block size specified; a work
area is also acquired based on the record size specified.

The preceding explains why the block size and record size specified for variable
files must be the largest block and record size to be found anywhere in the file.

File Specifications and Data Definitions 2–27

VSE Input and Output Files

The work area is optionally cleared to blanks prior to deblocking each record
into the work area. This ensures that residue from previous records (that may
be longer) is erased by VISION:Report. Variable length input must be of the
form that contains the block length in the form of BLxx as bytes 1-4 of the block,
and the record length as RLxx as bytes 1-4 of each record.

Variable length records are delivered to you in the work area with the record
length (RLxx) in positions 1-4 of the work area. You must, of course, consider
this in your specification of where a field starts. Initializing blanks to the work
area is optional. (See the section OPTION, in Chapter 3 for installation defaults
and the CLRVIP and CLRVOP keywords for details.)

Variable length output files use an I/O area and a work area concept. The
VISION:Report internal pointer points to a work area acquired, the size of the
largest variable record specified. You should build your output record
consisting of RLxx in positions 1-4 and the data starting in position 5. RL must
be in binary form. You should ensure that the binary record length you build
into RL is accurate. When you issue the WRITE OFx statement, the output area
is moved to the I/O area and the block is written when needed.

Variable length output areas may be blanked by VISION:Report before turning
the area over to you for use; fixed length output areas are not. Preblanking is
optional. See CLRVOP in the section OPTION, in Chapter 3.

VSE Undefined Files

No blocking is performed for input files. VISION:Report delivers the block size
on input files at VAL1-4-P. Undefined records or blocks are read directly into an
I/O area. An internal VISION:Report pointer points directly to the record in the
I/O area with no data movement taking place.

The output is processed directly in the output I/O area.

No blocking is performed for output files. You should move the exact data
record/block you want to OFA-OFZ. The length placed in VAL1-4-P prior to
issuing the WRITE verb is the length to be used for creating the data on the
output file.

VSE ISAM Files

Block size and record size are used to allocate I/O areas. ISAM input files are
processed directly in the I/O area. In the case of unblocked ISAM files, the block
size and record size should be specified as equal numbers; VISION:Report
allocates sufficient extra bytes for the key and sequence link.

2–28 VISION:Report Reference Guide

VSE Input and Output Files

Actual reading and deblocking of the ISAM file is based on the block size and
record size recorded in the file labels, stored in the VTOC of the ISAM file.
Unblocked ISAM files must have the key embedded in the record to enable
VISION:Report to deliver the key and data to you. If the key is not embedded in
the record, the data-only portion of the record is all that is delivered to you.
Block and record sizes are picked up from the I/O parameter statements.

ISAM output files are built using an I/O area and a work area. The work area is
the size of your record length in the case of blocked files. The work area is the
size of your record length plus your key length in the case of unblocked ISAM.
Build your record into OFA using MOVE commands. The key should be placed
in the output area consistent with the KLOC specification. If KLEN is specified
as 10 and KLOC is specified as 1, you should build a 10-digit key in output
positions 1-10.

Unblocked ISAM files require the key to be in position 1. If you specify an
unblocked ISAM file of 80 position records with a 15 position key, the work area
is 95 positions; build your key in 1-15 and your data in 16-95.

ISAM Output Parameters for OFA

To load an ISAM file, you must specify the following options on the OFA output
parameter statement:

KLEN=nnn,KLOC=nnn,OFTRK=nnn

The KLEN parameter specifies the length of the key for the ISAM file.

The KLOC parameter specifies the location of the key within the record.
Unblocked ISAM files do not have the key contained within the record. The
KLOC parameter for unblocked ISAM files should be KLOC=001.

For blocked ISAM files, the key may be contained within the record and does
not have to be in position 1. If your key starts in position 12 of a blocked ISAM
file, the KLOC parameter would be KLOC=012.

The OFTRK parameter specifies how many overflow tracks to reserve on each
cylinder. The OFTRK parameter should never be specified to be equal to or
greater than the number of tracks in a cylinder; it should always be less. If
OFTRK is not specified, the default is as follows:

File Specifications and Data Definitions 2–29

VSE Considerations

DEVICE OVERFLOW TRACKS

2311 2

2314 4

3330 3

3340 2

OFTRK is specific to ISAM. ISAM is not supported on 3350 and later devices.

VSE Considerations
FILE statements are required for input/output files (no PRT or PUN definitions
are needed). SYSIPT, SYSLST, and SYSPCH are used for reading in
VISION:Report program statements or data, printer output, and punch output,
respectively.

Files accessed by using the CALL routines (QUIKISAM, QUIKVSAM,
QUIKDLI, QUIKIDMS) do not require I/O statements, although the appropriate
JCL statements are needed.

VISION:Report Parameter Statements

Input/output parameter statements (DET, INA through INZ, and OFA through
OFZ) are required. See VSE Parameter Statements.

Execute Statement
// EXEC QUKBJOB

2–30 VISION:Report Reference Guide

MVS Input and Output Files

MVS Input and Output Files
VISION:Report supports up to 53 files as follows:

Files

DET Detail Input File

INA-INZ Input Files

OFA-OFZ Output Files

MVS files are defined through the DD JCL as follows:

DD JCL

DET SYSDET

INA SYSINA

INB SYSINB

INC SYSINC

IND SYSIND

INE SYSINE

INF SYSUT1

ING-INZ SYSING-SYSINZ, respectively

OFA SYSUT2

OFB SYSUT3

OFC SYSUT4

OFD SYSUT5

OFE-OFZ SYSOFE-SYSOFZ, respectively

PRT SYSPRINT

PUN SYSPUNCH

If the respective files are defined, the VISION:Report data areas DET, INA-INZ,
and OFA-OFZ are available for use. (To change the defaults, see the section
OPTION, in Chapter 3.)

All files are opened and closed automatically, unless the OPEN and/or CLOSE
statements are used.

File Specifications and Data Definitions 2–31

MVS Input and Output Files

The imperative I/O statements that affect the actual data transfer are:

I/O Statements

GET WRITE ADDRECORD

READ REWRITE DELETE

Input files can be limited by the LIMITREADS and SAMPLES declarative
statements.

ISAM input files can be generically accessed or updated by the respective
SETGENKEY and REWRITE.

User statement references to file areas are posted and checked after all
statements have been read. A diagnostic occurs (ERR208) if a direct reference is
made to a file that is greater than the LRECL value taken from the DD statement
or data set label.

VSAM files are supported natively. You can read sequentially, read randomly,
add, change, or delete VSAM records.

MVS Block/Record Size

MVS block size and record size are taken from either the DD statement (if
present) and/or from the data set labels. A DD statement example to read a
tape input file follows:

//SYSUT1 DD DSN=file.id,DISP=OLD,VOL=SER=volnum,UNIT=TAPE

MVS Fixed Length Files

Fixed length input files are processed directly in the input I/O area by setting an
address pointer in the VISION:Report internals directly to the record to be
processed. This mode of operation does not require a work area and eliminates
data movement. This mode is often referred to as GET Locate.

All fixed length output files are processed in a work area that is the same size as
the LRECL of the file.

You assemble your output record with one or more MOVE statements.

A WRITE OFx causes VISION:Report to transfer the work area to the output
buffer. This mode is referred to as PUT MOVE.

2–32 VISION:Report Reference Guide

MVS Input and Output Files

After a WRITE, the record just written is still available in the work area. The
following code is valid (under MVS):

010 GET

 MOVE INF1-80 TO OFA1

 WRITE OFA /* Write first record

 MOVE C'2' TO OFA1 /* Modify record

 WRITE OFA /* Write second record

 GOTO 010

MVS Variable Length Files

Variable length records are always delivered to you with the record length
(RLxx) in positions 1-4. You must consider this in determining where the actual
data starts.

Variable input files are processed using one of two methods:

■ Directly in the input I/O area. This is accomplished by setting an address
pointer, in the VISION:Report internals to the record that is to be processed.
This method of processing is not used if the file is VBS (variable blocked
spanned). It is used only if the OPTION CLRVIP=NO (default) is in effect.

■ Using a work area that is the same size as the LRECL of the file if the file is
VBS and/or the OPTION CLRVIP=YES is in effect. The internal
VISION:Report pointer always points to this area.

Variable length output files use an I/O area and a work area concept. The
VISION:Report internal pointer points to a work area acquired, the size of the
largest variable record specified. You should build your output record
consisting of RLxx in positions 1-4 and the data starting in position 5. RL must
be in binary form. You should ensure that the binary record length you build
into RL is accurate. When you issue the WRITE OFx statement, the output area
is moved to the I/O area and the block is written when needed.

Variable length output areas may be blanked by VISION:Report before turning
the area over to you for use; fixed length output areas are not. Initializing blanks
to the work area is optional. See CLRVOP in the section OPTION, in Chapter 3.

MVS Undefined Files

Undefined input and output files may be tape or disk for MVS.

No blocking is performed for input files. VISION:Report delivers the block size
on input at VAL1-4-P. Undefined records or blocks are read directly into an I/O
area. An internal VISION:Report pointer points directly to the record in the I/O
area with no data movement taking place.

File Specifications and Data Definitions 2–33

MVS Considerations

No blocking is performed for output files. You should move the exact data
record/block you want to OFA-OFZ. The length placed in VAL1-4-P prior to
issuing the WRITE verb is the length to be used for creating the data on the
output.

MVS ISAM Files

Block size and record size are used to allocate I/O areas. ISAM input files are
processed directly in the I/O area. In the case of unblocked ISAM files, block
size and record size should be specified as equal numbers; VISION:Report
allocates sufficient extra bytes for the key and sequence link.

Actual reading and deblocking of the ISAM file is based on the block size and
record size recorded in the file labels, stored in the VTOC of the ISAM file.
Unblocked ISAM files must have the key embedded in the record to enable
VISION:Report to deliver the key and data to you. If the key is not embedded in
the record, the data-only portion of the record is all that is delivered to you.
Block and record sizes are picked up from the DD statement and/or the file
itself.

For ISAM files, RECFM=F and RKP=0 are not allowed.

ISAM output files are built using an I/O area and a work area. The work area
size is equal to your record size. Build your record into OFA using MOVE
commands. The key should be placed in the output area consistent with the key
location of the file. If key length of the file is specified as 10 and the key location
is specified as 1, you should build a l0-digit key in output positions 1-10.

MVS Considerations

VISION:Report Parameter Statements

Input/Output parameter statements (DET, INA-INZ, and OFA-OFZ) are not
required.

Functional Differences

No VISION:Report MVS messages are issued to the console. All messages are
routed to the printer (SYSPRINT) output.

If VISION:Report MVS ABENDs with code U3333, see the printer (SYSPRINT)
output data set for an explanation.

2–34 VISION:Report Reference Guide

MVS Considerations

Execute Statement
//stepname EXEC PGM=QUIKJOB

DD Statement and File Characteristics

The following table details the relationship between VISION:Report MVS file
names and ddnames, and DCB characteristics of each data set.

Report
File

DDNAME RECFM LRECL BLKSIZE QISAM DCB
INFO,RKP, KEYLEN,
and so on

DET SYSDET Note 1 Note 1 Note 1 Note 1

INA-
INE

SYSINA-
SYSINE

Note 1 Note 1 Note 1 Note 1

INF SYSUT1 Note 1 Note 1 Note 1 Note 1

ING-
INZ

SYSING-

SYSINZ

Note 1 Note 1 Note 1 Note 1

OFA SYSUT2 Note 2 Note 2 Note 2 Note 3

OFB SYSUT3 Note 2 Note 2 Note 2 Note 3

OFC SYSUT4 Note 2 Note 2 Note 2 Note 3

OFD SYSUT5 Note 2 Note 2 Note 2 Note 3

OFE-
OFZ

SYSOFE-

SYSOFZ

Note 2 Note 2 Note 2 Note 3

PRT SYSPRINT FBA Note 5 Note 4 N/A

PUN SYSPUNCH FBA Note 6 Note 4 N/A

 SYSIN FB 80 Note 1 N/A

Table Notes
1. For non-VSAM data sets, taken from the DD statement or input data set

label. For VSAM data sets, taken from VSAM catalog.

2. Copied from the DD statement for this file or from the SYSUT1 file (if
present, not VSAM, and file is opened prior to output file — this method is
not recommended, because of the enormous potential for errors).

3. Must be specified in the DD statement for this file.

4. Same as LRECL unless specified in the DD statement for this file.

File Specifications and Data Definitions 2–35

Database Files

5. This is the user option with a default of 133.

6. This is the user option with a default of 81.

SYSIN and SYSPRINT DD statements are required for all executions. SYSPRINT
can be overridden by the OPTION PRTDD verb. Others are required only if
referenced in parameter statements by the GET/WRITE/PUNCH verbs or use
of the file area.

All files may reside on any tape, disk, or unit record device supported by
QSAM and may be any RECFM. In addition, SYSUTx files may be QISAM. You
must include DCB=(DSORG=IS), along with any other necessary QISAM DCB
subparameters on the appropriate DD statements, if the data set is QISAM.

Concatenation of data sets with unlike attributes is allowed. LRECL and format
(fixed, variable, undefined) must be the same.

All other DD keyword requirements are MVS standard.

Database Files
For the databases not supported directly by VISION:Report, such as QUIKDLI,
QUIKIDMS, and QUIKIMS, you may build a calling parameter for the
appropriate routine, as described in the DLI, IDMS, or IMS reference manual.
For DB2 or SQL/DS rows, use the VISION:Report EXEC SQL verb, as described
in the VISION:Report Interface to DB2® Reference Guide.

QUIKDLI, QUIKIDMS, QUIKIMS, and VISION:Interface for DB2 and SQL/DS
with VISION:Report are optional interfaces and may not be available at your
installation.

DB2 or SQL/DS

DB2 or SQL/DS rows or files may be accessed by using the VISION:Report
EXEC SQL verb. See the VISION:Report Interface to DB2 Reference Manual.

ADABAS Interface

ADABAS access is accomplished by an access module, named ADAMINT.
From your VISION:Report program, build a calling parameter list to ADAMINT
as described in the appropriate ADABAS reference manual.

2–36 VISION:Report Reference Guide

User Abend Codes

TOTAL Interface

TOTAL®, by its nature is callable. Therefore, TOTAL can be called directly from
VISION:Report by using the CALL verb. For additional information, refer to
your TOTAL reference manual.

DBOMP

See the section Optional Material, in Chapter 3 for calling sequences of DBOMP.
(VSE only.)

User Abend Codes
For a complete list of diagnostic codes and user ABEND codes, refer to the
VISION:Report Messages and Codes Guide.

Setting the Step Return Code

Move an EBCDIC value in the range 0000 through 4095 to VAL46-49 before EOJ.
If you do not alter VAL46-49 during your execution, the return code is 0000 or
whatever value was returned in register 15 from the last called program.

Causing the Step to Abend

Execution of a VISION:Report ABEND statement causes VISION:Report/MVS
to issue an ABEND macro with the user ABEND code that you have placed at
VAL67-70. The user ABEND code must be an EBCDIC value in the range of
0000 through 4095. If you do not alter VAL67-70 during your execution, it
contains 4095. Do not use a code that begins with 3 as VISION:Report uses these
codes.

A hexprint of the active VISION:Report areas can be indicated by setting the
option QJMDUMP=YES when an ABEND is issued.

A memory dump is produced when option UABNDMP=YES and an ABEND is
issued.

VISION:Report can provide memory dumps for each of the above CANCEL
code conditions. This is done with the YES/NO settings of the VISION:Report
Options U331DMP-U399DMP. (See the section OPTION, in Chapter 3.)

File Specifications and Data Definitions 2–37

Chapter

3
Statement Format

General Rules
Use the following rules for the syntax of VISION:Report. In most cases, you
must enter statements in the exact order given.

Rule Description

Rule A Brackets [] indicate an optional entry.

Rule B Braces { } indicate a choice of entries; unless a default is indicated,
you must choose one of the entries.

Rule C Items separated by a vertical bar | represent alternative items. You
can select no more than one of the items.

Rule E An ellipsis ... indicates that multiple entries of the type
immediately preceding the ellipsis are allowed.

Rule F Underscored type indicates the default entry. If the operand is
omitted, the underscored value is assumed.

Rule G Uppercase letters indicate the characters to be entered. You must
enter such items exactly as shown.

Rule H Lowercase letters indicate fields you must supply.

Rule I You must enter punctuation, such as parentheses and single
quotation marks, exactly as shown.

Rule J A sequence number (seq-no) can preface each statement. The
sequence number can be 1-8 digits, except in the HDR statement,
where it can be 1-4 digits.

Rule K A period indicates the end of true condition processing (IF or
WHEN) and identifies the next statement as the beginning of false
processing (ELSE).

Statement Format 3–1

ABEND

Rule Description

Rule L The following variations are acceptable: ZERO, ZEROS, or
ZEROES; BLANK or BLANKS; SPACE or SPACES; HIVALUE or
HIVALUES; LOVALUE or LOVALUES; SINGLE SPACE, SINGLE
SPACED, SINGLESPACE, or SINGLESPACED; DOUBLE SPACE,
DOUBLE SPACED, DOUBLESPACE, or DOUBLESPACED;
TRIPLE SPACE, TRIPLE SPACED, TRIPLESPACE, or
TRIPLESPACED; ZERO SPACE, ZERO SPACED, ZEROSPACE, or
ZEROSPACED; EQ, EQUAL, or =; GT or >; LT or <.

ABEND
ABEND [code]

Term Description

ABEND Cancels VISION:Report with a user-chosen ABEND code.

The ABEND statement causes VISION:Report to issue an MVS
ABEND macro or a VSE CANCEL macro to cancel the job and
bypass the remaining steps in the same job.

code Either move an ABEND code to VAL67-70 prior to issuing the
ABEND statement or specify a code here. The ABEND code
must be between 0000 and 4095. Codes beginning with 3 are
not recommended, as VISION:Report uses these for other
purposes.

VSE VISION:Report prints this code or the ABEND code from
VAL67-70 on the printer prior to issuing the CANCEL macro.

If no ABEND code is specified or VAL67-70 is not altered, the code used is 4095.
A code moved to VAL67-70 that is greater than 4095 results in 4095.

3–2 VISION:Report Reference Guide

ACCEPT

ACCEPT
ACCEPT flddef

Term Description

ACCEPT Transfers to the defined field a data stream keyed into the
system through the operator’s console.

flddef Define the field to receive the data keyed into the system
through the console. This field can be a maximum of 80
positions.

The ACCEPT statement causes suspension of the application until the operator
has keyed a data stream followed by an end of block command or the
appropriate terminator (such as the ENTER key).

The operator’s reply is forced to uppercase and placed in the user-defined area,
and the application resumes execution.

Example

In this example, if the operator keys 10 characters before the EOB, 10 characters
are entered starting in WST1. Prior contents of all 10 positions are overwritten.

010 DISPLAY C'ENTER MONTH OF PROCESS AS NN' /* Notify operator
020 ACCEPT WST1-2 /* Accept operator reply
030 IF WST1-2 IS NUMERIC /* Test data for numeric
040 GO TO ... /* or go to the appropriate
050 /* processing routine

Statement Format 3–3

ACCUM

ACCUM
The ACCUM statement can be used in two contexts: accumulation and
automatic printing of totals (called a simple summary) and a more versatile
context (called summarize and calculate), which allows you to reference each
counter directly and perform calculations at control breaks.

Simple Accumulation

If no references to accumulators for evaluation and/or calculation are made at
total time, the general accumulator CTR is used in all ACCUM statements.

This action causes VISION:Report to automatically assign the first counter to the
first ACCUM statement, and the second counter to the second ACCUM, as
examples.

There are 16 CTR accumulators. Each contains an 8-byte, packed decimal value.

No direct references to these accumulators are allowed. You cannot accumulate
two or more data fields into the same accumulator without first forming the
value into the field specified in the ACCUM statement.

Addressable Accumulation

When either detail-time reference to accumulators (such as, ADD, SUB, IF) or
control break calculations-before-total-print is intended, you specify one of 16
accumulators CTA, CTB, CTC, . . . CTP for each ACCUM. This method
provides direct addressability to the minor level counters at detail time. Using
this form of the ACCUM, you accumulate from more than one field into one
accumulator using ACCUM, ADD, SUB, MULT, and DIVD statements.

If control break calculations are involved (invoked through CHECKBREAKS
ON BREAKS PERFORM xxx THRU yyy) you may place calculation results into
accumulators that have not been accumulated. In this case, you code an
ACCUM NONE INTO A n BYTE CTx statement. This dummy ACCUM
provides total print specifications for CTx, but generates no detail-time
accumulation coding.

The two different contexts cannot be coded in the same program. If CTR is
specified in one ACCUM, you must specify it in all ACCUM statements.

3–4 VISION:Report Reference Guide

ACCUM (with REPORT)

ACCUM (with REPORT)
ACCUM {flddef|ONE|NONE} [IN A n BYTE CTx]

Term Description

ACCUM Accumulates and prints totals automatically in a report. The
totals are lined-up in the proper detail columns. This eliminates
the need to specify print positions in the ACCUM statement
when using it with the REPORT statement.

flddef Specifies the data field that is to be accumulated.

ONE Accumulates a count of one each time the program executes
the ACCUM ONE statement. The length of the counter and the
CTx must be specified for access to the counter. To print this
total, the CTx (or its equated name) must be referenced in the
REPORT statement, with the number of bytes specified.

NONE Performs no accumulations. Specifying NONE reserves an
accumulator for later data storage and/or use. To print the
contents of this CTx, it must be referenced in the REPORT
statement and IN A n BYTE CTx must be specified.

A message, **Period Ignored** is issued if a period follows the
statement ACCUM NONE.

The ACCUM NONE is declarative and therefore cannot be the
subject of a transfer in control statement (for example, GOTO,
PERFORM).

IN A n BYTE
CTx

IN A n BYTE provides the number of bytes for the length of the
counter (from 1 to 8). CTx defines the accumulators CTA
through CTP.

The two forms of ACCUM statements (with or without IN A n BYTE CTx)
cannot be combined within the same program. Apply the chosen form
consistently in each ACCUM statement.

If IN A n BYTE CTx is specified, you must also specify CTx with the correct
number of bytes and the rightmost position on the REPORT statement.

For example:

REPORT CTA7-8-P 0
 .
 .
ACCUM ONE IN A 2 BYTE CTA

If access to the accumulated total is not required, and you want to accumulate
and print only, IN A n BYTE CTx is not necessary.

Statement Format 3–5

ACCUM (with REPORT)

The number of print positions generated for each accumulator is calculated as
the length of your source field plus 2 digits. If the total requires more print
positions than the source field plus 2, the IN A n BYTE CTX operand gives you
override control of the number of print positions.

Example

The input field is PENNIES (2 bytes). But, if the expected total exceeds one
million dollars, you would code:

ACCUM PENNIES IN A 6 BYTE CTA.

The ACCUM, REPORT, BREAK, and CHECKBREAKS statements work
together to produce a report with totals.

The data names to be accumulated must first be referenced by the REPORT
statement.

EQU PLANT INF2-4
 EQU EMP-NUM INF7-10
 EQU EMP-NAME INF20-39
 EQU SSN INF11-19 S
 EQU HR-RATE INF50-54 2C
 EQU YR-RATE INF55-59 0C
 TITLE1 'COMPUTER ASSOCIATES'
 TITLE2 'PERSONNEL REPORT'
 REPORT PLANT (PLANT-NAME) EMP-NUM (EMPLOYEE-NUMBER)
 EMP-NAME (EMPLOYEE-NAME)
 SSN (SOCIAL-SECURITY-NUMBER)
 HR-RATE (HOURLY-RATE)
 BREAK 1 PLANT SB 1 SA 1

010 GET INF
 CHECKBREAKS
 ACCUM HR-RATE
 PRINT REPORT
 GOTO 010
 END

3–6 VISION:Report Reference Guide

ACCUM (with REPORT)

 COMPUTER ASSOCIATES
 PERSONNEL REPORT

PLANT EMPLOYEE EMPLOYEE SOCIAL HOURLY
NAME NUMBER NAME SECURITY RATE
 NUMBER

CHI 6211 KELLAR,CORETA 678-72-5411 .00
CHI 4396 CLINGMAN,GREGORY 949-09-1052 11.00
CHI 1999 MANNING,PAULA 861-22-2579 .00
CHI 1918 PIRNIA,LINDA 226-18-5824 10.60
.
.
.
 21.60

SFR 2460 IVANOFF,SUSANA 241-98-8324 10.00
SFR 4546 RAHL,THOMAS 172-76-1610 10.60
SFR 0632 TITAN,MARKSIX 948-10-1300 .00
SFR 1711 SHERIDAN,HONEY SUE 676-10-8110 11.25
SFR 1219 JOHNSON,HAROLD 503-28-2966 .00
SFR 0911 THOMPSON,PETER 172-13-1972 .00

 31.85

 53.45

Statement Format 3–7

ACCUM (User Addressable)

ACCUM (User Addressable)
ACCUM {flddef|ONE|NONE} [IN A n BYTE CTx [ON BREAKS PRINT IN POS nnn [nC|nE|nN]]]

Term Description

ACCUM Adds data, a value of one, or none (defines printing
specifications only, does not accumulate) to one of 16
VISION:Report-generated accumulators. This form of the
ACCUM statement allows you to address accumulators.
These are printed at a control break by VISION:Report.

The ACCUM statement is coded at the point where the
actual add to the accumulator is performed.

flddef
ONE
NONE

Enter the flddef of the field to be accumulated, or enter
ONE or NONE. The data field can be in EBCDIC format
(maximum of 19 digits), packed format (maximum of 10
bytes), or binary format (maximum of 8 bytes).

A data field can be EBCDIC and have leading or all
blanks. VISION:Report adds leading zeros before
accumulating. Data that is not blank or numeric causes
the program to ABEND. You should include
IF...NUMERIC coding ahead of the ACCUM to ensure
that only valid data reaches the ACCUM. If you enter
ONE, a count of one is accumulated each time the
program executes the ACCUM statement. This form is
useful for counting purposes.

If you enter NONE, there is no accumulation performed.
VISION:Report sets up print specifications for the
accumulator, assuming you will calculate and add a value
to the accumulator at the control break. VISION:Report
automatically performs the functions such as prints the
accumulator, rolls it and clears it.

A message, **Period Ignored** is issued if a period
follows the statement ACCUM NONE.

The ACCUM NONE is declarative and therefore cannot
be the subject of a transfer in control statement (such as,
GOTO, PERFORM).

IN A n BYTE Ctx IN A n BYTE provides the number of bytes for the length
of the counter (from 1 to 8). This length is necessary in
order that the appropriate edit word is constructed for
printing totals. There are 16 accumulators (and 16
ACCUM statements) available. CTx defines the
accumulators CTA through CTP.

3–8 VISION:Report Reference Guide

ACCUM (User Addressable)

Term Description

ON BREAKS PRINT
IN POS nnn

Leftmost print position in the total lines where the
accumulated total appears.

The printed total is leading zero-suppressed and contains
a decimal point to the left of the position specified in [nC,
nE, nN].

If you are detail printing the values being accumulated
and intend to print the totals aligned with the detail
values, you should carefully align the detail and total
print positions.

nC, nE, nN n defines the number of decimal positions to be shown in
the printed total. Enter 0 through 9.

C, E, and N are optional. C inserts commas as
appropriate. E (European) inserts a period before every
third integer position, and a comma in the decimal
position. N (non-zero suppression) suppresses leading
zeros.

The area required in the PRT area is:

■ One byte for each data byte.

■ One byte for a minus sign if CRSIGN=NO. Two bytes
for the literal CR if CRSIGN=YES.

■ One byte for a decimal point if decimals are specified.

■ One byte for every three integers if C or E is specified.

The BLANK WHEN ZERO (BWZ) option suppresses printing zero-filled
counters.

■ If OPTION BWZ=NO is in effect, an ACCUM statement specifying 2C
prints as .00.

■ If OPTION BWZ=YES is in effect, an ACCUM statement specifying 2C
prints as a blank field.

You also have the option of designating whether or not negative amounts in
counters print with a negative sign (-) or credit character (CR).

■ If OPTION CRSIGN=NO causes a negative sign to print, indicating a
negative counter.

■ If OPTION CRSIGN=YES causes CR to print, indicating a negative counter
count. The use of CR also requires one additional position to be used in the
print line.

See MOVE for printing space and edit mask requirements.

Statement Format 3–9

ACCUM (Simple Accumulation)

ACCUM (Simple Accumulation)
ACCUM {flddef|ONE} [IN A n BYTE CTx [ON BREAKS PRINT IN POS nnn [nC|nE|nN]]]

Term Description

ACCUM Adds data or a value of one to VISION:Report-generated
non-addressable accumulators which are printed
automatically at the control break. This form of the
ACCUM statement is non-addressable, simple
accumulation.

Code the ACCUM statement at the point where the
addition to the accumulator is to be performed.

flddef
ONE

Enter the flddef of the field to be accumulated, or enter
ONE. The data field is either EBCDIC, packed, or binary.
Binary fields must be 1-8 bytes long.

If the data field is EBCDIC and has leading or all blanks,
VISION:Report adds leading zeros before accumulating.
Data that is not blank or numeric causes the program to
ABEND. Include IF...NUMERIC coding ahead of the
ACCUM to ensure that only valid data reaches the
ACCUM.

If you enter ONE, a count of 1 is accumulated each time
the program passes through the ACCUM statement.

IN A n BYTE Ctx IN A n BYTE provides the number of bytes for the length
of the counter (from 1 to 8). This length is necessary to
construct the appropriate edit word for printing totals.
There are 16 accumulators (and 16 ACCUM statements)
available. CTx defines the accumulators CTA through
CTP.

ON BREAKS PRINT
IN POS nnn

Leftmost print position in the total lines where the
accumulated total appears.

The printed total is leading zero-suppressed and contains
a decimal point to the left of the position specified in
[nC, nE, nN].

If you are detail printing the values being accumulated,
and intend to print the totals aligned with the detail
values, align the detail and total print positions.

3–10 VISION:Report Reference Guide

ACCUM (Simple Accumulation)

Term Description

nC, nE, nN n defines the number of decimal positions to be shown in
the printed total. Enter 0 through 9.

C, E, and N are optional. C inserts commas as
appropriate. E inserts a period before every third integer
position and a comma in the decimal position.
N suppresses leading zeros.

The area required in the PRT area is:

■ One byte for each data byte.

■ One byte for a minus sign if CRSIGN=NO. Two bytes
for the literal CR if CRSIGN=YES.

■ One byte for a decimal point if decimals are specified.

■ One byte for every three integers if C or E is specified.

The BLANK WHEN ZERO (BWZ) option suppresses printing zero-filled
counters.

■ If OPTION BWZ=NO is in effect, an ACCUM statement specifying 2C
prints as .00.

■ If OPTION BWZ=YES is in effect, an ACCUM statement specifying 2C
prints as a blank field.

You also have the option of designating whether or not negative amounts in
counters print with a negative sign (-) or credit character (CR).

■ If OPTION CRSIGN=NO causes a negative sign to print, indicating a
negative counter.

■ If OPTION CRSIGN=YES causes CR to print, indicating a negative counter
count. The use of CR also requires one additional position to be used in the
print line.

See MOVE for printing space and edit mask requirements.

OPTION SEQCHK=NO
EQU GROSS INF3-5-P
EQU HOURS-WORKED INF6-9
EQU P-PLANT PRT1
EQU PLANT INF1-2
Break 1 PLANT SB N……
100 GET
 CHECKBREAKS
 MOVE PLANT TO P-PLANT
 ACCUM HOURS-WORKED IN A 4 BYTE CTR, ON BREAKS PRINT IN POS 004 2C
 GO TO 100

Statement Format 3–11

ADD

This produces a report of summary total lines at the plant level. You supply
HDR statements for the headings.

PLANT HOURS-WORKED GROSS
 26 X-X.XX X-X.XX

ADD
ADD {flddef1|C'xxx'|P'nnn'|X'...'} TO flddef2

Term Description

ADD Adds the first value to the second value.

flddef1
C'xxx'
P'nnn'
X'...'

Defines the flddef or literal with a limit of 19 digits EBCDIC or
a packed field of 10 bytes (19 digits and sign). Binary fields can
be 1-8 bytes. Fields and literals in any data format can be
added to fields in any other data format. Automatic data
conversion is performed in all cases.

TO Required noise word.

flddef2 Defines the target area/field with a limit of 19 digits EBCDIC
or a packed field of 10 bytes (19 digits and sign). Binary fields
can be 1-8 bytes.

Examples
ADD INF1-19 to WST1-19 /* Add EBCDIC to EBCDIC
ADD INF1-10-P TO OFA10-13-P /* Add packed to packed
ADD WST1-3-B TO WST11-16-B /* Add 3-byte to 6-byte binary
ADD INF8-10-P TO PUN1-10 /* Add packed to EBCDIC
ADD INF47-50-B TO OFA2l-26-P /* Add 4-byte binary to packed
ADD C'1' TO WST5-7 /* Add a literal to EBCDIC
ADD C'123' TO OFA7-10-P /* Add a literal to packed
ADD C'4' TO OFF1-8-B /* Add a literal to 8-byte binary

ADD treats fields with leading or all blanks (EBCDIC format) as zeros in the
blank positions.

3–12 VISION:Report Reference Guide

ADDRECORD

ADDRECORD
ADDRECORD {INA-INZ|DET} [flddef] [ONERROR seq-no]

Note: This statement cannot be used with ESDS VSAM files.

Term Description

ADDRECORD Inserts a record into a KSDS or RRDS VSAM file based upon
the key of the record, if KSDS, or the relative record number,
if RRDS.

INA-INZ, DET File name can be any VISION:Report input file name (INA-
INZ, DET).

flddef Optional. A field definition or an equated data name that
contains the relative record number (key) of the record.

This is valid for RRDS VSAM files only and must be coded
when the file is RRDS. The key field must be 4-byte binary.

The key for a KSDS VSAM file must be within the record.

ONERROR
seq-no

Optional. The ONERROR operand causes VISION:Report to
automatically transfer to the statement of the specified
sequence number when a VSAM error occurs. This allows
you to examine the error codes (RC/EC) and take appropriate
action. If this operand is not coded and a VSAM error occurs,
execution continues with the next statement. It then becomes
your responsibility to check for these errors.

You must specify the length of the record in the 2-byte field preceding the I/O
area. See the techniques in the section File Specifications and Data Definitions,
in Chapter 2.

The following error is returned when the ONERROR operand is not coded:

 Error Word RC/EC
Error VAL253-255 VAL 247-248

DUPLICATE RECORD 'DUP' X'0808'

Statement Format 3–13

AND (Logical And)

AND (Logical And)
AND flddef1 WITH {flddef2 | C'xxx' | P'nnn' | X'...' | ZERO | BLANK | SPACE |
HIVALUE | LOVALUE } { flddef3 | X'...' }

Note: Do not confuse this AND verb with the AND option on the IF verb.

Term Description

AND Performs the logical AND of a data field. The contents of a bit
position in the source are set to 1 if the corresponding bit
positions in both operands contain ones; otherwise the bit is
set to 0. The resulting condition code is returned in VAL223-
B. If any bits in the source operand are 1 following completion
of the operation, then the condition code is x'01'; otherwise, it
is x'00'. In the case of a ZERO figcon, if flddef1 is character,
then a character zero x'F0' is used; otherwise, a binary zero
x'00' is used.

flddef1 Source data. This field can be changed because of the
operation.

WITH Required noise word.

flddef2
C'xxx'
P'nnn'
X'…'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

The second operand. This field is not changed.

flddef3
X'…'

Optional. A 2- or a 4-byte binary field indicating the number
of bytes to be ANDed. If this operand is omitted, then the
length of the source field is used.

3–14 VISION:Report Reference Guide

ATEND

Term Description

Example:

EQU FILLER WST0
EQU FLDA (6) C'ABCDEF'
EQU FLDB (6) X'BFBFBFBFBFBF'
 AND FLDA WITH FLDB
 PRINTHEX FLDA
 PRINTHEX VAL223

 WST1-6
 888888
 123456
 01..05.
 VAL223-223
 0
 1
 01

ATEND
ATEND seq-no

Term Description

ATEND Allows you to control when the default input file INF reaches
EOF (end of file).

seq-no The statement number of the first statement of the end-of-job
routine. The specified routine must end with GOTO EOJ. The
statement number is a 1- to 8-digit sequence number followed
by one or more spaces.

Use the ATEND statement to perform an end-of-input routine.

The ATEND is not normally needed in data selection programs or printed
summary reports, as VISION:Report forces end of job processing. However, if
you are summarizing through your own coding, you will lose your final
summary as user coding is not ordinarily entered when end of input is
recognized.

ATEND is not functional when any input file other than the default input file
INF is being read. When any input file other than the default input file INF is
specified, it becomes your responsibility to recognize EOF for all input files
either by using the ATEND operand on the GET statement or by determining
when any or all inputs have reached EOF (check for high-values in input area or
test for E in VAL-IN?-EOF area).

Statement Format 3–15

ATEND

The ATEND EOJ statement is not automatic with DET, INA-INE, and ING-INZ.

The ATEND statement is mutually exclusive with the ATEND operand on the
GET statement. An error occurs if both are found in the same VISION:Report
program.

If the ATEND statement is found when using two or more inputs and the
ATEND operand was not used on any of the GET statements, the ATEND
statement does nothing and is not diagnosed as being an error.

Automatic Summary Reporting

A significant number of report runs involve reading a sequenced file with group
control fields, accumulating totals based on detail data and control breaks, and
printing the group totals.

This type of program usually has certain standard logic: accumulation of totals
as the detail records are read, testing for control breaks and printing totals,
adding them to the next higher level, and zeroing the accumulators.

VISION:Report automates this process with three statements:

Term Description

BREAK A declarative statement that identifies the control (break)
field positions in the input records. See BREAK.

CHECKBREAKS An imperative statement that causes VISION:Report to
compare the control fields in the current record (as
described in BREAK statements) against the same fields in
the last INF record. When control breaks are found,
VISION:Report prints the accumulated totals, adds these to
the next level accumulators, and zeros the accumulators.
This print, add, zero cycle is repeated through the highest
break level found. See CHECKBREAKS.

ACCUM Both a declarative and imperative statement that causes data
fields to be accumulated and provides VISION:Report with
the total time print specifications for the accumulator. See
ACCUM.

3–16 VISION:Report Reference Guide

BREAK

BREAK
BREAK {n|F} area [SB {n|E}] [SA {n|E}] [PRINT C'character string' [IN TOT POS nnn]]

Term Description

BREAK Defines a VISION:Report field that is to be compared to the
contents of the same field in the last accepted record (which
has been automatically saved by VISION:Report). A total break
is implied whenever the contents of this field changes. Up to 9
total break levels, plus final totals, are allowed.

n | F BREAK 1 is the minor break. BREAK 9 is the major break. Any
number of fields may be examined for a break at each level. A
break in any of the fields causes a break for the level specified.
BREAK F allows a character string to be put in the final totals
line; the SB and SA may be included, but the values are
ignored.

area You must always specify a VISION:Report area, normally an
input file field, as break control.

SB n | E SB stands for Space Before total print. Enter 0, 1, or 2 to
generate zero, one, or two blank lines between the last detail
line and the total line. Enter E to eject to the next page and
print headers before printing totals.

VISION:Report automatically blanks the PRT area after every
user PRINT statement.

SA n | E SA stands for Space After total print. Enter 0, 1, or 2 to
generate zero, one, or two blank lines after the total line. Enter
E to cause a page eject after printing this total line.

PRINT C'xxx' The character string is an EBCDIC constant (up to 50 positions)
that prints in the total line starting in the position specified in
the total position operand (IN TOT POS nnn). This is ordinarily
used to identify total levels (for example, PLANT TOTAL).

IN TOT POS This operand defines the starting print position (nnn) for the
constant defined in the PRINT C operand.

When the BREAK statement is used along with the REPORT statement, this
operand is overridden, so that you do not have to assign a print position
and do not overlay the totals. The print position is assigned by the REPORT
statement by searching from left to right on the print line until space is
found for the literal.

If you want to print summary or total lines only and do not want to print detail
lines, use the SB version.

Statement Format 3–17

BREAK

Move the identifying data to the PRT area such as Plant, Dept; do not issue a
PRINT statement. The identifying data is left in the print line along with
accumulated totals.

CHECKBREAKS

BREAK statements define the fields to break on the actual comparison; breaking
is not executed until a CHECKBREAKS statement is encountered.

Example

 010 BREAK 1 INF... /* This sequence considers all
020 GET /* Input records for break compares
030 CHECKBREAKS

010 BREAK 1 INF... /* This sequence bypasses all
020 GET /* Records that do not apply to these
030 IF INF8-10 IS LT C'040' /* Reports and prevents false breaks
040 GOTO 020. /* And total prints caused by breaks
050 CHECKBREAKS /* In the non-applicable data.

3–18 VISION:Report Reference Guide

CALL

CALL
CALL user-routine-name [flddef|C'xxx'|P'nnn'|X'...'] ...

Term Description

CALL Loads a user coded routine at compilation time (VSE) or execution
time (MVS) and passes control to that routine each time the
executing VISION:Report program passes through the CALL
statement. Optionally, CALL passes to the user routine the address
of user-specified data areas and literals.

user-
routine-
name

Enter the name of the user routine to be called. You use the
contents of this operand to retrieve the module from the VSE
library, sublibrary or appropriate MVS load library and you must
therefore match exactly the name under which the routine was
cataloged.

flddef
C'xxx'
P'nnn'
X'...'

Enter data area pointers or literals appropriate to the user routines.
Literals may be EBCDIC, packed decimal, or hexadecimal. Data
area pointers or field definitions can be any addressable
VISION:Report area. Data pointers can be coded on one line or
continued onto additional lines as needed.

User subroutines that have been link edited with AMODE (31) and RMODE
(ANY) are supported subject to the operating system support. For MVS users,
this includes z/OS and OS/390. For VSE users, this support is effective starting
with VSE/ESA 1.3.

Language Environment Support

VISION: Report supports Language Environment (LE) from IBM. LE provides a
common run-time environment and run-time services for all Language
Environment conforming programming language products.

VISION:Report is compatible with IBM's Language Environment (LE) and
previously known as LE/370, and has been tested with COBOL and Assembler
programs. If a user written routing is invoked via a CALL statement in
VISION:Report, VISION:Report will automatically determine if it has been with
LE or not, and set up the appropriate environment accordingly. If LE, the
appropriate run-time libraries must be concatenated accordingly.

Statement Format 3–19

CALL

Data Area Pointers

Field Definitions

Code a standard VISION:Report field definition for the leftmost position of the
field to be referenced by the user routine (for example, if your routine references
INF1-5-P, code INF1). At execution time, the current memory address of INF1 is
passed to the user routine.

Field length and format values are not passed by VISION:Report. It is your
responsibility to consider field length and format in the user routine. All
VISION:Report areas can be addressed.

VISION:Report loads called user routines by the LOAD macro or RELOAD
macro (VSE) on a dynamic basis. An appropriate message is issued if there is
not sufficient space to accommodate the called user routine.

Literals

Term Description

C'xxx' Up to a 40-character EBCDIC literal.

P'nnn' Up to a 10-digit packed literal. In most VISION:Report
statements where a packed literal is coded, there is an
associated field to provide implicit length for the generated
literal. This is not true here and you must code leading zeros
and an odd number of digits to ensure generation of a literal of
the correct length. To generate a 3-byte packed literal set to 1,
you would code P'00001'.

X'...' A hexadecimal literal of up to 36 bytes.

Note: If you pass a literal to a subroutine, make sure the subroutine does not
change the value of the literal. Otherwise, unexpected results can occur.

Literals coded as described above are generated in the VISION:Report static
storage. At execution time VISION:Report passes to the user routine the address
of the leftmost position of the literal.

As noted under VISION:Report/User Routine Interface, VISION:Report does
not pass values to the user routine but does pass the memory addresses where
the values are stored.

3–20 VISION:Report Reference Guide

CALL

The following example illustrates this technique:

CALL DBOMP DET1 C'CLIENT'

■ DBOMP is the name of the called routine.

■ DET1 is the address where the data area is to return records.

■ CLIENT is the name of the file to be read.

Note: A space separates the operands; do not use commas as operand
separators.

Using the CALL Statement to Execute User Coded Routines

The CALL statement allows you to call user-written coding. It is designed to be
coded and function almost identically to the Assembler and COBOL CALL
statements. Some possible uses for called user code are:

■ Interface VISION:Report with databases such as TOTAL, IMS, DL/I, CA-
IDMS/DB.

■ Read or write files not supported by VISION:Report.

■ Translate data files to or from ASCII or other presentation.

■ Perform functions not within the scope of VISION:Report.

Technical Considerations
■ For your convenience, VISION:Report will call user subroutines that are

‘above the line’ or 31-bit mode if the user subroutine was linked in that
mode.

■ You can execute any number of user routines in the same VISION:Report
run or execution. You can call the same routine in more than one CALL
statement; however, it is resident in memory only once.

■ You must link edit called code to a VSE executable library (phase) or MVS
load library, as appropriate.

■ Multiple entry points are not supported.

■ Entry to the called code is made at the entry point of the routine. If the entry
point has been defined by an Assembler END statement pointing to an
address within the module, the LOAD macro or CDLOAD (VSE) provides
the entry point address.

Statement Format 3–21

CALL

■ Called code can be Assembler or COBOL, or other languages as long as the
code is compatible with the rules and linkages required by our CALL
processor. Specifically, FORTRAN and PL/I may not be compatible with the
Assembler and COBOL linkage conventions, rules, and VISION:Report
requirements. However, you may be able to create Assembler, COBOL,
and/or PL/I interfaces that will allow you to use COBOL or PL/I called
code.

In the Optional Material file that was downloaded during the
VISION:Report installation, a COBOL interface (ANSINT) can serve as an
example. ANSINT is available in source as well as object module. Although
this interface has been tested extensively, it may not work in your particular
environment.

Note: With the technology now available, you may no longer need this
subroutine.

■ User routines can also be referenced by the VISION:Report LOAD
statement, that only loads and provides addressability (with PTx), but does
not pass control to it.

VISION:Report/User Routine Interface

When VISION:Report transfers to a called user routine, the general register
contents are:

Register Number Contents

Register 14 Contains return address to VISION:Report. You should save
this address during execution of the called routine and
restore it at the conclusion of the routine. You should return
to VISION:Report through Register 14.

Register 15 Contains the entry point to the called user routine. It can be
used as a beginning or get started base register. Upon exit,
the subroutine may put a return value from 1 to 4095 in
Register 15.

Registers 2
through 12

These registers must be saved by the called routine
immediately upon entry. These registers are available for
use by the called routine and must be restored before
returned to VISION:Report.

3–22 VISION:Report Reference Guide

CALL

Register Number Contents

Register 1 Points to a parameter list of any number of fullwords. The
fullwords in turn contain the memory address of all the
parameter values that you coded as operands in the CALL
statement. For example, the first fullword points to the first
parameter following the user routine name and the second
fullword points to the second parameter.

The leftmost byte of the last parameter contains X'80' as a
flag to indicate that it is the last parameter.

If no parameters are used, R1 is undefined.

Register 13 Points to an area generated by VISION:Report consisting of
18 fullwords to accomplish register saving and return.

Register 13 is set to the address of word 1 of these 18 words.
Standard linkage conventions apply to this 18-word area:

Word 1: FORTRAN/PL/I use

Word 2: backward chain pointer

Word 3: forward chain pointer

Word 4-18: Registers 14, 15, 0, 1,..., 12

COBOL Considerations

VISION:Report requires subroutines to be cataloged to the phase library/load
library prior to being called by VISION:Report.

COBOL Subroutines

Subroutines cannot be cataloged with VISION:Report. For more information,
see the consideration as noted on the extracted data from the COBOL
Programmer’s Guide.

The solution is:

■ Prepare and assemble an initialization routine in Assembler. Catalog it to
relocatable library/object library.

■ Link edit the Assembler routine with the COBOL subroutine into the phase
library/load library.

or

Statement Format 3–23

CALL

■ Under MVS, issue a CALL to ILBOSTP0 (or the appropriate module name)
prior to issuing any VISION:Report action verb. This establishes the COBOL
environment and negates the requirement of ANSINT.

The ILBOSTP0 interface is required for COBOL II. The following is excerpted
from the VS COBOLII Application Programming guide:

Calling COBOL from a non-COBOL Program

If the first program in the application is not COBOL, there can be significant
degradation if COBOL is repeatedly called, since the COBOL environment must
be initialized and terminated each time a COBOL main program is invoked.
This overhead can be reduced by using one of the following:

■ Call the first program from a COBOL stub program (a program that
contains just a CALL statement to the original first program).

■ Call ILBOSTP0 from the first program to make it appear as the COBOL
main program (this is provided for compatibility with OS/VS COBOL;
calling IGZERRE is preferred over calling ILBOSTP0).

The ILBOSTP0 library routine, which was available in OS/VS COBOL to
support non-COBOL programs acting as main programs, is still supported. See
Overriding the ILBOSTP0 AMODE/RMODE Attributes (in the VS COBOLII
Application Programming guide) for more information on ILBOSTP0.

The significance of this method is that it makes an assembler program act like a
COBOL main program, so that subsequently called COBOL programs act like
subprograms. Also, use of STOP RUN results in control being returned to the
caller of the caller of the first COBOL program.

ILBOSTP0 is used to create a reusable run-time environment; the non-COBOL
caller will act like the main COBOL program.

ANSINT

The Assembler initialization subroutine, ANSINT (ANS Interface), provides you
with an interface to an American National Standard COBOL program. ANSINT
has been included as part of the installation process and is available in the object
library, as well as in the source/optional material library.

The ANSINT subroutine must be link edited with your COBOL program and
must be included first. Care must be taken to ensure that ANSINT is linked
ahead of your COBOL program. ANSINT supports DOS/VS and OS/VS
COBOL, as well as COBOL II.

Be sure that the proper COBOL object library is in the correct search sequence,
as there are duplicate object module names for DOS/VS or OS/VS COBOL and
COBOL II.

3–24 VISION:Report Reference Guide

CHECKBREAKS

VSE Considerations

The following example shows how to compile and link edit your COBOL
subroutine, CALLRTN1, into the phase library. Observe the sequence of the
PHASE and the INCLUDE statements. You must follow the sequence of these
two statements.

// OPTION CATAL
 PHASE CALLRTN1,*
 INCLUDE ANSINT
// EXEC FCOBOL
... cobol source
/*
// EXEC LNKEDT

MVS Considerations

The following example shows how to compile and link edit your COBOL
subroutine, CALLRTN1, into the load library. Observe the sequence of the
ORDER statement. It is essential to follow this sequence.

//COMPILE EXEC COBVCL VS/COBOL
//COB.SYSIN DD *
 .. cobol source
//LKED.OBJLIB DD DISP=SHR,
 DSN=QUIKJOB.OBJ ANSINT HERE
//LKED.SYSIN DD *
 INCLUDE OBJLIB(ANSINT)
 ORDER ANSINT,CALLRTN1
 NAME CALLRTN1(R)
/*

CHECKBREAKS
CHECKBREAKS [ON BREAKS PERFORM seq-no THRU seq-no]

There are two forms of the CHECKBREAKS statement:

■ No operands.

■ Accesses a total printing time VISION:Report user routine.

CHECKBREAKS with No Operands

CHECKBREAKS performs the actual comparison and, if total level breaks have
occurred, causes the totals to be printed, added to the next level of
accumulators, and cleared as appropriate.

If you use a BREAK statement, a CHECKBREAKS statement must be used to
obtain desirable results.

Statement Format 3–25

CHECKBREAKS

If a BREAK statement is specified and no CHECKBREAKS statement is issued
during the execution of the program, total breaks do not occur, and the printing
of totals at the desired time does not occur.

If VISION:Report reaches EOJ automatically or by a GOTO EOJ statement under
these conditions, all totals are printed at end of job.

The values in each level of total are printed and then added as part of the grand
total. In other words, the entire accumulation is accumulated in the minor or
level one accumulators, printed, added to the level two accumulators, printed,
added to the level three accumulators, continued in this sequence, then added
to the grand total accumulators, and printed as grand totals.

A BREAK statement with no CHECKBREAKS is useful if you want to read a
file and total the dollar values, but do not want any printout except the totals for
the entire file.

For example:

010 GET
 BREAK 1 INF1-2
 ACCUM INF4-7-P IN A 4 BYTE CTR, ON BREAKS......
 GO TO 010
999 END

The entire INF file is read and the data in each record positions 4-7 packed are
accumulated in a 4-byte (7-digit) accumulator. EOF for the INF file transfers to
VISION:Report internal EOJ, the level 1 or minor accumulator is printed, added
to the grand total accumulator, minor accumulator zeroed, and the grand total
accumulator is printed.

CHECKBREAKS ON BREAKS PERFORM seq-no THRU seq-no

This form of the CHECKBREAKS statement allows you to specify a
PERFORM/EXIT routine. This routine is executed when a control (total) break
is recognized and before accumulators are printed, added to the next level, and
zeroed.

Note: Only use this form of CHECKBREAKS if you need to gain control at total
printing time.

CHECKBREAKS performs the actual comparison of the BREAK fields in the
current input record against the comparable fields from the last input record
that VISION:Report saved.

If total breaks have occurred, the specified PERFORM/EXIT subroutine is
executed once for each level of break that occurred.

VISION:Report accomplishes the following tasks relative to the user routine:

3–26 VISION:Report Reference Guide

CHECKBREAKS

■ Values area locations VAL180, VAL181, and VAL182 are created and used
as follows:

Location Description

VAL180 Posts an EBCDIC 1, 2...9 or F before PERFORM xxx
through yyy to indicate the level of the break being
passed to xxx through yyy. You can evaluate VAL180
if user processing logic differs between levels.

If you want your total printing time routine to be
repeated, move an EBCDIC 'R' to VAL181. Your
printing routine will be reentered until you move any
other character to VAL181.

VAL181 Blanks VAL181 before PERFORM xxx through yyy. If
your PERFORM logic determines that no totals should
be printed, move an EBCDIC 'N' to VAL181 before
exiting at yyy. If VISION:Report finds an N at VAL181,
space before and space after total printing is
suppressed for this occurrence of that break.

VAL182 Blanks VAL182 before PERFORM xxx through yyy. If
your PERFORM logic determines that a page eject is
appropriate, then move an EBCDIC 'E' to VAL182. If
VISION:Report finds an E at VAL182, a page eject and
DOHEADERS are executed after total line printing (or
suppression through VAL181=N).

VISION:Report increments the addresses of CTA...CTP to point at the
accumulators for the level being passed. When VAL180 contains 1,
CTA...CTP point at the level 1 (minor) accumulators; when VAL180
contains 2, CTA...CTP point at the level 2 accumulator set, and so on.

For example, if three break levels (minor, intermediate, major) are specified and
a third level major break occurs:

■ Post '1' to location VAL180, blank VAL181 and VAL182.

■ Set addresses to CTA...CTP at level 1 accumulators.

■ Perform seq-no through seq-no.

■ Test for user modification of VAL181 and VAL182; act accordingly.

■ Print level 1 accumulators, add level 1 accumulators to level 2, zero
level 1.

■ Post '2' to location VAL180, blank VAL181 and VAL182.

■ Set addresses of CTA...CTP at level 2 accumulators.

■ Perform seq-no through seq-no.

■ Test for user modification of VAL181-182; act accordingly.

Statement Format 3–27

CLOSE

■ Print level 2 accumulators, add level 2 accumulators to level 3, and zero
level 2 accumulators.

■ Post '3' to location VAL180, blank VAL181-182.

■ Set addresses of CTA...CTP at level 3 accumulators.

■ Perform seq-no through seq-no.

■ Test for user modification of VAL181-182; act accordingly.

■ Print level 3 accumulators, add level 3 accumulators to Final level, and
zero level 3 accumulators.

■ Set addresses of CTA...CTP back to level 1 accumulators.

■ Return to statement following CHECKBREAKS.

CLOSE
CLOSE {INF|INA-INZ|DET|OFA-OFZ}

VISION:Report automatically closes all open files at end of job. However, as a
matter of good coding technique, if you open a file, you should close it.

Term Description

CLOSE Allows an OPEN statement to reopen a file for additional
processing or releases the buffer space for a file to obtain
additional memory (MVS only) for other called programs or
files.

INA-INZ
DET
OFA-OFZ

This can be any VISION:Report input and/or output file name.
INF is the default.

Example
005 GET INC ATEND 100 /* INC opened automatically

 IF INC1 IS NOT EQ C'-' /* Use only '-' records
 GOTO 005.
 Processing statements
 GOTO 005
100 CLOSE INC /* Close INC file
 OPEN INC /* Reopen INC file
120 GET INC ATEND EOJ
 IF INC1 IS EQ C'-' /* Do not use '-' records
 GOTO 120.
 Processing statements
 GOTO 120

3–28 VISION:Report Reference Guide

CLOSER (VSAM ONLY)

CLOSER (VSAM ONLY)
CLOSER {INF|INA-INZ|DET}

VISION:Report automatically closes all open files at end of job. However, as a
matter of good coding technique, if you open a file, you should close it.

Term Description

CLOSER Performs a CLOSE and an OPEN without releasing control
blocks and regenerating them. Resets counters.

INA-INZ
DET

This can be any VISION:Report input and/or output file name.
INF is the default.

Example
005 GET INC ATEND 100 /* INC opened automatically
 IF INC1 IS NOT EQ C'-' /* Use only '-' records
 GOTO 005.
 Processing statements
 GOTO 005
100 CLOSER INC /* Close INC file
120 GET INC ATEND EOJ
 IF INC1 IS EQ C'-' /* Do not use '-' records
 GOTO 120.
 Processing statements
 GOTO 120

Statement Format 3–29

CONDATE

CONDATE
CONDATE from-mask AT flddef1 TO to-mask AT flddef2

Term Description

CONDATE Maintains a 6-digit date in a 2-byte binary field. The date is
compressed into two bytes based upon a mask pattern. You
must use the EXDATE statement to restore the date to 6 digits.

Century is not indicated in CONDATE and EXDATE format.
However, you can still use it.

from-mask This 6-character mask represents the format of the date to be
compressed. The mask must be one of the following formats:

MMDDYY Month(MM), Day(DD), Year(YY)

DDMMYY Day(DD), Month(MM), Year(YY)

YYMMDD Year(YY), Month(MM), Day(DD)

YYDDMM Year(YY), Day(DD), Month(MM)

flddef1 This 6-character VISION:Report area contains the date to be
compressed. The date must be in the same pattern as the from-
mask. Otherwise invalid results occur.

Example:

From-Mask Date
DDMMYY 310301 (31 March, 2001)

to-mask This 16-character mask indicates what each bit in the 2-byte
VISION:Report field is to represent. The 2-byte field contains
the compressed date. The month, day, and year of the date
require the following:

MMMM 4 bits for the month

DDDDD 5 bits for the day

YYYYYYY 7 bits for the year

The mask must be in one of the following formats:

MMMMDDDDDYYYYYYY Month, day, year

DDDDDMMMMYYYYYYY Day, month, year

YYYYYYYMMMMDDDDD Year, month, day

YYYYYYYDDDDDMMMM Year, day, month

Example:To-Mask Date

DDDDDMMMMYYYYYYY 310396 (31 March, 96)

3–30 VISION:Report Reference Guide

DELETE

Term Description

flddef2 This 2-byte binary VISION:Report field contains the date after
it has been compressed.

DELETE
DELETE {INA-INZ|DET} [ONERROR seq-no]

Term Description

DELETE Deletes the last record retrieved from a KSDS or RRDS VSAM
file.

Note: This statement cannot be used with ESDS VSAM files.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-
INZ, DET).

ONERROR
seq-no

Causes VISION:Report to automatically transfer to the
statement the sequence number when a VSAM error occurs.
This allows you to examine the error codes (RC/EC) and take
appropriate action. If this operand is not coded and a VSAM
error occurs, execution continues with the next statement. It
then becomes your responsibility to check for these errors.

DISPLAY
DISPLAY {flddef|C'xxx'}

Term Description

DISPLAY Displays the specified field or literal on the system console.

flddef
C'xxx'

Defines the field to be displayed, up to 80 positions. The data
displayed is presumed to be EBCDIC; no data translation is
made. If you specify a character literal, the length can be up to
64 characters.

Example

 010 DISPLAY C'ENTER MONTH TO PROCESS AS NN' /* Notify operator
020 ACCEPT WST1-2 /* Accept operator reply
030 IF WST1-2 IS NUMERIC /* Test reply for numeric or
040 GO TO ... /* Go to the processing routine.

Statement Format 3–31

DIVD

DIVD
DIVD flddef1 nD BY {flddef2|C'xxx'|P'nnn'|X'...'} nD GIVING flddef3 nD[R]

Term Description

DIVD Divides the contents of the dividend field by the contents of the
divisor field or literal and stores the answer in the quotient
field. Decimal alignment specifications are required for all
operands. The remainder is placed at VAL30-37-P in packed
decimal format.

Fields and literals in any data format may be divided by fields
in any other data format. Automatic data conversion is
performed in all cases.

flddef1 Defines the dividend field in the standard format. Data may be
in EBCDIC format (maximum of 19 digits), packed format
(maximum of 10 bytes), or binary format (maximum of 8
bytes).

nD Number of decimal positions in the dividend field (for
example, if the dividend field has 2 decimal positions, code
2D).

BY Required noise word.

flddef2
C'xxx'
P'nnn'
X'...'

Defines the divisor field in standard format with the same
length limitations as dividend field. You can code a constant as
the divisor with a maximum of 11 digits in the constant.

nD Number of decimal positions in divisor flddef or literal.

GIVING Required noise word.

flddef3 Defines the quotient field in standard format with the same
length limitations as dividend field.

nD Number of decimal positions in quotient field.

R Rounds the quotient.

All division and multiplication is performed internally in packed decimal.
Dividends, divisors, and quotients may be up to 10 bytes packed, 19 bytes
EBCDIC, and 8 bytes binary.

Quotients may have 10-digits with a maximum value of 2,147,483,647. An
attempt to compute a binary quotient greater than 2,147,483,647 results in a
FIXED POINT DIVIDE exception.

3–32 VISION:Report Reference Guide

DOHEADERS

DOHEADERS
DOHEADERS [PAGEONE]

Term Description

DOHEADERS Ejects to the next page and prints page headers. This
statement allows you to force page headers at your
convenience.

PAGEONE This entry forces page headers to restart with page number 1.

If PAGEONE is not specified, the forced page headers
continue with the next page number.

DROP
DROP user-routine-name

Term Description

DROP Deletes called and/or loaded modules from memory. Use this
statement if you intend to eliminate a module from memory
in order to make room for other modules. VISION:Report
automatically releases all modules at EOJ.

user-routine
name

This name must match the name under which the routine was
called or loaded. An error occurs if the module specified here
was never coded on a LOAD or a CALL statement.

VISION:Report ignores an attempt to drop a module that is not in memory at
that time.

Example
010 CALL MYMODULE WST1 INF1

.

.

.
DROP MYMODULE

Statement Format 3–33

EJECT

EJECT
EJECT

This statement is declarative and therefore cannot be the subject of a transfer in
control statement (for example, GOTO, PERFORM).

Term Description

EJECT Forces page ejection of the VISION:Report statement listing.
Different routines can be printed on different pages, thus
making the VISION:Report listing easier to read.

END
END

Term Description

END Indicates the end of VISION:Report statements.

In MVS, the END statement is only required if a user table is being read, but as
a good practice, include an END statement in any program.

In VSE, if the input file is in 80 byte form, it should start immediately after this
statement and end with the appropriate data statement. If a user table and 80-
byte input are to be read, see the examples below.

80-Byte Input Only
INFCARD
010 GET INF /* Read the input record
 MOVE INF1-80 to PRT1 /* Move record to printer
 PRINT /* Print the record
 GO TO 010
999 END
 User input data for INF file goes here
/* /* VSE delimiter
/&

3–34 VISION:Report Reference Guide

END

80-Byte Input and Table Input

VSE Example

 INFCARD
 TABLSPEC 0200 01 05 /* Expect 200 table entries
020 GET /* Get an input record
 IF INF1-5 IS ONTABLE /* If number is on the table
 MOVE INF1-80 to OFA1-80 /* Move the record to the output
 WRITE OFA. /* Write the record to output
 GO TO 020 /* Go get next input record
999 END
 Table data goes here
/*
 INF data statements go here
/*
/&

MVS Example
//SYSIN DD *
010 TABLSPEC 0200 01 05
020 GET
030 IF INF1-5 IS ONTABLE
040 MOVE INF1-80 TO OFA1-80
050 WRITE OFA.
060 GOTO 020
999 END
 Table data goes here
/*

Statement Format 3–35

EQU

EQU
EQU data-name {flddef|(n)|(x)} [nC|nE|nN]
[C'xxx'|P'nnn'|X'...'|ZERO|BLANK|SPACE|HIVALUE|LOVALUE]

Term Description

EQU Equates a data name to a VISION:Report field definition. It
allows you to code descriptive data names in VISION:Report
statements. VISION:Report interprets these as the field
definition supplied as a function in the EQU statement.
Constants (or literals) can be specified optionally.

EQU statements must precede VISION:Report imperative
statements. You should never use VISION:Report field
definitions (for example, @VAL...) as data names.

If you use an equated data name, the name must be at least
three characters long or you can get unpredictable results,
especially with MOVE and/or MOVE VARIABLE LENGTH.

data-name Code the data name. The data name can be up to 34 characters
long and consist of any string of characters in the EBCDIC set.
(Parentheses and Embedded blanks are not allowed when
using the REPORT statement.) The first blank encountered
terminates the data name. Do not use the following characters
as part of the data name:

' apostrophe " double quotation mark
(left parenthesis) right parenthesis
: colon , comma
; semicolon * asterisk
/ slash . period
? question mark + plus sign
¬ not sign ! exclamation point
| vertical bar & ampersand
< less than > greater than
{ left brace } right brace
[left bracket] right bracket

You can use the hyphen (-) sign or underscore (_), but not as
the last character of a data name.

flddef After allowing one or more spaces to terminate the data name,
code the VISION:Report field definition that applies to the data
name. This definition should consist of the AREA/FROM/TO
format of the field.

n If there is a previously defined field definition, only the field
length needs to be coded. The equated names are assigned
adjacent positions (based on the stated length) in the same area
as the last equate.

3–36 VISION:Report Reference Guide

EQU

Term Description

(x….x) Redefine the name. If there is a previously defined field
definition, only the field name needs to be coded.

nC nE nN For use with MOVE equated name to PRT area and/or
REPORT statement. Edit field specifications for printing may
be stated here rather than in each MOVE statement where the
equated name is used. If the MOVE statement includes edit
specifications, the EQU edit specifications are overridden. (See
MOVE (Expanded Editing) for more coding details.)

A non-blank value indicates this is a numeric field. The length
of a character field is 19 if this field is used.

C'xxx'
P'nnn'
X'...'

Literal or figurative constants stated here are moved into the
field definition prior to execution.

Literals may not exceed the size of the equated field area or a
diagnostic occurs. Character literals may contain up to 40
characters.

Packed literals may be up to 19 digits long. Hexadecimal
literals may be from 2 to 24 characters long.

ZERO
BLANK
SPACE
HIVALUE
LOVALUE

Figurative constants (for example, ZERO, BLANK) may be
initialized into an equated data area. SPACE and BLANK may
be used only in conjunction with EBCDIC fields. LOVALUES
and HIVALUES are not usable within packed field equates.

See General Rules, Rule L for more information about
figurative constants.

The equated field format determines the actual format of the equated name.
Hexadecimal literals are moved 2 characters at a time into 1 byte of the equated
area. Formats must be the same or a combination of hexadecimal with EBCDIC.

If you try to initialize a file area, an error message will be issued.

Statement Format 3–37

EQU

Examples

These equates are assigned to:

Equates assigned to

EQU MY-RECORD WST1-66 /*GROUP AREA
EQU MY-RECORD /*REDEFINES
EQU NAME WST1-30 /*WST1-30
EQU ADDRESS (15) /*WST31-45
EQU CITY (10) /*WST46-55
EQU STATE (2) /*WST56-57
EQU ZIP (9) /*WST58-66

Another use of 'n' can be employed for group area designator and elementary
field definition redefines (much like COBOL redefines). Equated names may
overlap or redefine a previously equated data area.

Equated names

EQU WORK-AREA1 WST /*WST00-00 Group area designators**
EQU TAX (4)-P /*WST1-4-P
EQU PRCT-WHLD (4)-P /*WST5-8-P
EQU COMMPRCT (4)-P /*WST9-12-P
EQU WORK-AREA2 WST /*WST00-00 Group area designators**
EQU TAX2 (TAX) /*WST1-4-P Redefine TAX
EQU PRCT2 (PRCT-WHLD) /*WST5-8-P Redefine
EQU COMM2 (4) /*WST9-12 Redefine

**When using a group area designator, you cannot use edit field specifications,
literals, and figurative constants, and you can never directly reference the
equated name in any VISION:Report statement.

You can perform this type of equate with edit field specifications, literal, and
figurative constants; however, you should use them with care. The operands
coded in an EQU statement are applied when that equated name is assigned.

Each literal or figurative constant is moved into the equated data area. In the
final occurrence of an EQU statement with an area that has been previously
equated, the literal or figurative constant is the data to reside in the equated
area upon execution.

If you use a literal or figurative constant in a file area, such as INF, an error
message is issued.

3–38 VISION:Report Reference Guide

EQU

These equates are assigned to:

Equates assigned to

EQU NAME WST1-20 /* WST1-20
EQU ADDRESS (20) /* WST21-40
EQU BILL-AMOUNT (4)-P /* WST41-44-P
EQU BILL-DATE (6) /* WST45-50
EQU CUSTOMER-CODE (2)-B /* WST51-52-B
EQU NAME-PR PRT1-20 /* PRT1-20
EQU ADDRESS-PR (20) /* PRT21-40
EQU BILL-AMOUNT-PR (8) 2C /* PRT41-48
EQU UNIT-PRICE INF1-3-P
EQU UNIT-COST INF7-9-P
EQU PR-UNIT-PRICE PRT10
EQU SUBTRACT-FIVE INF10
EQU DATE1 WST70-79 C'91029xxxx'
EQU MY-CTR WST90-93-P ZEROS
EQU IN-DATE INZ9995-10000 /* Format MMDDYY

050 MOVE UNIT-PRICE TO PR-UNIT-PRICE 2C

is interpreted as

050 MOVE INF1-3-P TO PRT10 2C

EQU Statements for VAL Area

A table of EQU statements for the VAL area is loaded during the compile phase.
Any of these data names can be used in VISION:Report programs without
coding EQU statements. See the section VAL Area in Chapter 2 for a more
detailed description.

Change these equates by selecting the source module, QUIKVEQU (MVS) or
QUKBVEQU (VSE), from the optional material file. Refer to the VISION:Report
Installation Guide for information about Optional Material.

Statement Format 3–39

EQU

The EQU statements as supplied are:

Field Data Name Definition Edit Spec

@VAL-AREA VAL0001-0799

@VAL-UNDEF-LTH VAL0001-0004-P 0C

@VAL-IPL-DATE VAL0005-0012

@VAL-IPL-MONTH VAL0013-0021

@VAL-DOS-UPSI VAL0022-0029

@VAL-REMAINDER VAL0030-0037-P 0C

@VAL-JOBNAME VAL0038-0045

@VAL-RETURN-CD VAL0046-0049

@VAL-MMDDYY VAL0050-0055 D

@VAL-IPL-MM VAL0050-0051

@VAL-IPL-DD VAL0052-0053

@VAL-IPL-YY VAL0054-0055

@VAL-YYMMDD VAL0056-0061 D

@VAL-TIME VAL0062-0066

@VAL-ABEND-CD VAL0067-0070

@VAL-YYDDD VAL0071-0075

@VAL-PARMBYTES VAL0076-0077-B 0C

@VAL-PARAMETER VAL0078-0177

@VAL-COMREG VAL0078-0088

@VAL-BREAK-LVL VAL0180-0180

@VAL-BREAK-PRT VAL0181-0181

@VAL-BREAK-EJC VAL0182-0182

@VAL-INF-EOF VAL0196-0196

@VAL-DET-EOF VAL0197-0197

@VAL-INC-EOF VAL0198-0198

@VAL-IND-EOF VAL0199-0199

@VAL-SORT-EOF VAL0200-0200

@VAL-SORT-LTH VAL0201-0204-B 0C

3–40 VISION:Report Reference Guide

EQU

Field Data Name Definition Edit Spec

@VAL-PHASE-LTH VAL0205-0208-B 0C

@VAL-WHEN-LTH VAL0225-0228-B 0C

@VAL-FILE-NAME VAL0229-0231

@VAL-REC-COUNT VAL0232-0235-B 0C

@VAL-DTF-DCB VAL0236-0239-B

@VAL-VSAM-FILE VAL0240-0240

@VAL-VSAMACCES VAL0241-0241

@VAL-VSAMLRECL VAL0243-0246-B 0C

@VAL-VSAM-RC VAL0247-0247-B

@VAL-VSAM-EC VAL0248-0248-B

@VAL-VSAM-RCEC VAL0247-0248-B

@VAL-VSAM-RBA VAL0249-0252-B

@VAL-VSAM-ERR VAL0253-0255

@VAL-VSAM-RBX VAL0249-0256-B (for VSAM-XRBA only)

@VAL-VSAM-ERX VAL0257-0259 (for VSAM-XRBA only)

@VAL-RESV-MEM VAL0257-0260-B

@VAL-SQLCA VAL0273-0408

@VAL-SQL-CAID VAL0273-0280

@VAL-SQL-LEN VAL0281-0284-B 0C

@VAL-SQL-CODE VAL0285-0288-B

@VAL-SQL-ERRML VAL0289-0290-B

@VAL-SQL-ERRMC VAL0291-0360

@VAL-SQL-ERRP VAL0361-0368

@VAL-SQL-ERRD1 VAL0369-0372-B

@VAL-SQL-ERRD2 VAL0373-0376-B

@VAL-SQL-ERRD3 VAL0377-0380-B

@VAL-SQL-ERRD4 VAL0381-0384-B

@VAL-SQL-ERRD5 VAL0385-0388-B

@VAL-SQL-ERRD6 VAL0389-0392-B

@VAL-SQL-WARN0 VAL0393-0393

Statement Format 3–41

EQU

Field Data Name Definition Edit Spec

@VAL-SQL-WARN1 VAL0394-0394

@VAL-SQL-WARN2 VAL0395-0395

@VAL-SQL-WARN3 VAL0396-0396

@VAL-SQL-WARN4 VAL0397-0397

@VAL-SQL-WARN5 VAL0398-0398

@VAL-SQL-WARN6 VAL0399-0399

@VAL-SQL-WARN7 VAL0400-0400

@VAL-SQL-WARN8 VAL0401-0401

@VAL-SQL-WARN9 VAL0402-0402

@VAL-SQL-WARNA VAL0403-0403

@VAL-SQL-STATE VAL0404-0408

@VAL-SQL-LSTFN VAL0409-0410-B

@VAL-YYYY VAL0411-0414

@VAL-INA-EOF VAL0415-0415

@VAL-INB-EOF VAL0416-0416

@VAL-INE-EOF VAL0417-0417

@VAL-ING-EOF VAL0418-0418

@VAL-INH-EOF VAL0419-0419

@VAL-INI-EOF VAL0420-0420

@VAL-INJ-EOF VAL0421-0421

@VAL-INK-EOF VAL0422-0422

@VAL-INL-EOF VAL0423-0423

@VAL-INM-EOF VAL0424-0424

@VAL-INN-EOF VAL0425-0425

@VAL-INO-EOF VAL0426-0426

@VAL-INP-EOF VAL0427-0427

@VAL-INQ-EOF VAL0428-0428

@VAL-INR-EOF VAL0429-0429

@VAL-INS-EOF VAL0430-0430

@VAL-INT-EOF VAL0431-0431

3–42 VISION:Report Reference Guide

EQU

Field Data Name Definition Edit Spec

@VAL-INU-EOF VAL0432-0432

@VAL-INV-EOF VAL0433-0433

@VAL-INW-EOF VAL0434-0434

@VAL-INX-EOF VAL0435-0435

@VAL-INY-EOF VAL0436-0436

@VAL-INZ-EOF VAL0437-0437

@VAL-SQL-MLEN VAL0438-0439-B

@VAL-SQL-MALL VAL0440-0759

@VAL-SQL-M1 VAL0440-0519

@VAL-SQL-M2 VAL0520-0599

@VAL-SQL-M3 VAL0600-0679

@VAL-SQL-M4 VAL0680-0759

@VAL-EXP-RSVR1 VAL0760-0799

Statement Format 3–43

EXDATE

EXDATE
EXDATE from-mask AT flddef1 TO to-mask AT flddef2

Term Description

EXDATE Decompresses a 2-byte binary date, created by a CONDATE
statement, into a six-character date.

Century is not indicated in CONDATE and EXDATE format.
However, you can still use it.

from-mask ■ This 16-character mask indicates what each bit in the 2-
byte VISION:Report field represents. The month, day, and
year of the date require the following mask:

 MMMM 4 bits for the month

 DDDDD 5 bits for the day

 YYYYYYY 7 bits for the year

■ The mask must be in one of the following formats and
must be the same as the to-mask used in the EXDATE
statement for this field.

 MMMMDDDDDYYYYYYY Month, day, year

 DDDDDMMMMYYYYYYY Day, month, year

 YYYYYYYMMMMDDDDD Year, month, day

 YYYYYYYDDDDDMMMM Year, day, month

AT Required noise word.

flddef1 This two-character VISION:Report field contains the
compressed date.

For example:
 To-Mask MMMMDDDDDYYYYYY
 Condensed Date 310396 (31 March, 96)

TO Required noise word.

to-mask This 6-character mask describes the format of the
decompressed data. This mask is normally the same as the
from-mask used in the CONDATE statement for this field.
The mask must be in one of the following formats:

MMDDYY Month(MM), Day(DD), Year(YY)

DDMMYY Day(DD), Month(MM), Year(YY)

YYMMDD Year(YY), Month(MM), Day(DD)

YYDDMM Year(YY), Day(DD), Month(MM)

3–44 VISION:Report Reference Guide

EXIT

Term Description

AT Required noise word.

flddef2 This is the 6-character VISION:Report field into which the
date is expanded. The date is in the format specified by the
to-mask.

EXIT
seq-no EXIT

Term Description

EXIT Represents the end of a performed subroutine. If the
statements preceding the EXIT are fallen into (as opposed to
performed), the EXIT is deactivated and control transfers to the
statement following the EXIT.

There must be a sequence number on the EXIT statement.

Statement Format 3–45

GET

GET
GET {INF|INA-INZ|DET} [ATEND {seq-no|EOJ}]

Term Description

GET Reads the next logical record available in the data area specified.

INA-INZ
DET

Specifies the data area to be read. If left blank, INF is assumed and
you cannot use the ATEND operand. When EOF is reached, the
data area for the specified file is filled with high-values (X'FF'). An
EBCDIC 'E' (X'C5') is moved to one of the following positions in
the VAL area, depending on the file name:

VAL196 INF VAL420 INI VAL429 INR

VAL197 DET VAL421 INJ VAL430 INS

VAL198 INC VAL422 INK VAL431 INT

VAL199 IND VAL423 INL VAL432 INU

VAL415 INA VAL424 INM VAL433 INV

VAL416 INB VAL425 INN VAL434 INW

VAL417 INE VAL426 INO VAL435 INX

VAL418 ING VAL427 INP VAL436 INY

VAL419 INH VAL428 INQ VAL437 INZ

If EOF occurs for a file and INF is the only input file, you have the following
options:

■ If you do not want control at EOF, do not use the ATEND statement or the
GET statement with an ATEND operand. VISION:Report automatically
takes final totals and goes to EOJ when EOF occurs.

010 GET INC

■ If you do want control at EOF, use either the ATEND statement or the GET
statement with an ATEND operand.

010 GET DET ATEND 100
 Processing statements
 GOTO 010
100 DOHEADERS
 Processing statements
 GOTO EOJ

If EOF occurs for a file and the ATEND operand is given, VISION:Report
automatically transfers to the statement whose sequence number is nnnn or
EOJ.

■ You can check for EOF in a file by checking the VAL area or checking for
high-values in the file’s data area.

3–46 VISION:Report Reference Guide

GET

IF VAL197 IS EQ C'E' /* DET at EOF?
 IF VAL196 IS EQ C'E' /* INF at EOF?
 IF VAL199 IS EQ C'E' /* IND at EOF?
 GOTO 500. /* Where 500 is EOJ routine

If there are no user high-value records in the files, you can use the following
format:

IF INF1-5 IS EQ INC1-5 /* INF eq INC
 IF INF1-5 IS EQ DET1-5 /* INF eq DET
 IF INF1-5 IS HIVALUE /* And HIVALUE
 GOTO 500. /* Where 500 is EOJ routine

Term Description

ATEND If this operand is used, the sequence number must specify a
transfer point to receive control when EOF for the file occurs. If
the ATEND operand is used, you must include a GOTO EOJ
statement in the EOJ routine to allow VISION:Report, for
example, to close all files, take final totals.

seq-no When EOF occurs, VISION:Report:

■ Moves high-values to the file’s record area.

■ Moves an E to the appropriate position in the VAL
area.

■ Transfers control to the statement specified by seq-no.

EOJ Transfers to the end of job routine.

If the input file is a VSAM file, the length of the record is returned in the 2-byte
or 4-byte length field preceding the I/O area. See the techniques discussed in
the section VSAM Recommendations in Chapter 2 to access this field. When a
VSAM file reaches EOF using GET and you want to continue processing (using
GET), to avoid error 212 you must close and open the file.

When you specify more than one input file or the input file is not INF, you must
recognize EOF with one of the following methods:

■ Using the ATEND operand on the GET statement.

■ Determining when any or all inputs have reached EOF (checking for high-
values in the input area, or testing for E in VAL area).

Statement Format 3–47

GOTO

GOTO
GOTO {seq-no|EOJ}

Term Description

GOTO Transfers control to the statement specified by sequence
number of EOJ. You can also specify this as GO TO.

seq-no Transfers to this statement sequence number.

EOJ Transfers to the end-of-job routine. This statement has the
effect of putting HIVALUES into the INF area, forcing all total
levels, and going to end of job after closing out all files.

The GOTO EOJ statement can be very useful in going to early end of job when
you have processed all pertinent data in a large file.

For example, if a report being produced applies only to PLANT 07 (INF1-2),
close out the run when the first record with a plant number higher than 07 is
read.

IF INF1-2 IS GT C'07'
 GOTO EOJ.

If you want to run a few pages of a report and terminate the run for testing, you
can code:

EQU PAGE-NR PNR1-4-P
IF PAGE-NR IS GT P'nn'
 GO TO EOJ.

3–48 VISION:Report Reference Guide

HDR

HDR
HDR {1-6} {[A{carriage control}header data] | [{B-Z}header data]}

The HDR statement can only have a sequence number of 1-4 digits.

Term Description

HDR Specifies user report header lines, a 120 to nnnn character
print line. Must be input in columns 5-7 even if you specify
option SEQCHK=NO. (The optional sequence number is in
columns 1-4.)

1-6 Identifies the header line number (for example, 1 is the first
line, 2 is the second line). You are allowed six heading line
numbers, and 26 heading line segments within each heading
number. Each statement represents one part of the header
print line. Must be input in column 9.

A-Z Identifies heading line segment (A to Z) within the header line
number. This operand must be input in column 10.

carriage
control

Specifies the ASA standard carriage control for the A heading
line. The carriage control is defined in column 12 and the data
to appear in the print line starts in column 13.

Blank Single-space before printing
0 Double-space before printing
- Triple-space before printing
+ Do not space before printing
1 Skip to channel 1 before printing
2-9, A, B, C Skip to respective channel before printing

header data Defines the data to appear in the print line.

The A heading line contains the carriage control character and
the first 66 print positions (for a total of 67 print positions); the
B through Z segments contain up to 66 print positions.
Heading line segments may be specified in any order. If only
segments A and G are specified, segments B-F default to
blanks. For example, a 1B would be part of the first header
with printing starting in print position 67. The maximum
number of print positions for one line is 1,717 or 67+(25*66).

For heading lines B through Z, the header data must start in
column 12 and end in column 77. Heading line A uses
positions 12-78 (column 12 contains carriage control; the
header data starts in column 13).

If you use all 66 print positions of heading line A, the 66th
position would extend past the STMTEND position. You may
have to override the STMTEND option (see OPTION).

Statement Format 3–49

HDR

Example

Col
5-7

Col
9-10

Col
12-n

HDR 1A First heading line of report run on $IPLDAT$ page
PG. The first character in column 12 is the ASA
carriage control character. (The date and page number
may be used on any header line.)

HDR 1B-1Z 66 bytes of first heading as a continuation from previous
statement.

HDR 2A Left side of second heading line.

HDR 2B-2Z 66 bytes of first heading as a continuation from previous
statement.

HDR 3A Left side of third heading line.

HDR 3B-3Z 66 bytes of first heading as a continuation from previous
statement.

HDR 4A Left side of fourth heading line.

HDR 4B-4Z 66 bytes of first heading as a continuation from previous
statement.

HDR 5A Left side of fifth heading line.

HDR 5B-5Z 66 bytes of first heading as a continuation from previous
statement.

HDR 6A Left side of sixth heading line.

HDR 6B-6Z 66 bytes of first heading as a continuation from previous
statement.

When all headers have been loaded, VISION:Report scans the headers and
reacts as indicated:

Term Description

$IPLDAT$ The 8-byte MM/DD/YY date is placed in the header
positions occupied by the constant. This is the date of the
system IPL, unless overridden by the // DATE JCL statement
in VSE.

$IPLDYYYY$ The 10-byte MM/DD/YYYY date is placed in the header
positions occupied by the constant. This is the date of the
system IPL, unless overridden by the // DATE JCL statement
in VSE.

3–50 VISION:Report Reference Guide

HDR

Term Description

$DATE$ If this constant is found, VISION:Report places the six-
position Julian (YY.DDD) date in the header positions
occupied by the constant. This is the date of the system IPL
and cannot be overridden by the // DATE JCL statement in
VSE.

$JDYYYY$ If this constant is found, VISION:Report places the eight-
position Julian date (YYYY.DDD) in the header positions
occupied by the constant. This is the date of the system IPL
and cannot be overridden by the // DATE JCL statement in
VSE.

PG If this constant is found, VISION:Report prints a 4-digit, zero-
suppressed page number in the positions where the constant
appears. You can check or modify the current page number
by using the PNR1-4-P dataname.

PAG If this constant is found, VISION:Report prints a 5-digit, zero-
suppressed page number in the positions where the constant
appears. You can check or modify the current page number
by using the PNR1-4-P dataname.

$PAGE$ If this constant is found, VISION:Report prints a 6-digit, zero-
suppressed page number in the positions where the constant
appears. You can check or modify the current page number
by using the PNR1-4-P dataname.

$PAGES$ Same as $PAGE$, except VISION:Report prints a 7-digit,
zero-suppressed page number.

$JOBNAM$ If this constant is found, VISION:Report places the eight-
character job name in the header positions occupied by the
constant.

TIM If this constant is found, VISION:Report places the 5-digit
current time (HH.MM) in the header position occupied by the
constant.

Additionally, you can specify valid equated data names or
field definitions enclosed in dollar signs (reserved header
names) to place user data fields in the header areas each time
page headers are printed.

The reserved words ($datanames$) are expanded or
compressed as needed to correspond to the data field length.

This feature is intended to simplify those cases where sections
of a report are identified by file data placed in the page titles.
This data should be moved from the record input area to a
WST work area so that it can be accessed at end of file time.

Statement Format 3–51

HDR

Page Header Modification
1. You can reference page headings. Headers 1 through 6 are areas HDA

through HDF and are addressable as such. HDA1 is the first visible print
position.

2. Page headings are not printed until the first PRINT statement is executed.
You can modify the headings with first data record information or
information typed in through an ACCEPT statement, as an example.

Example

 MOVE INF1-10 TO HDF1-10

The previous statement moves the input record INF positions 1 through 10 into
the sixth heading, positions 1 through 10. Data from an input area should not be
used at end of file time.

The PRTSIZE=nnnn option actually determines the maximum length of the
header statements. User statement references to PRT are allowed up to the
maximum PRTSIZE option value in effect for each respective VISION:Report
program. Any value between 121 and the maximum (as defined by the
hardware and the operating system) is valid, with 133 as the default.

3–52 VISION:Report Reference Guide

HEXCOND

HEXCOND
HEXCOND flddef1 WITH flddef2 { flddef3 | X'...' }

Term Description

HEXCOND Translates and tests a data field using a 256-byte substitution
list with non-zero function bytes in all positions except for the
character values A-F and 0-9. The value of each byte in the
source is added to the list address and the function byte at the
resulting address is inspected for a value of zero. The source
field remains unchanged. The bytes in the source field are
examined one-by-one, from left to right, until a non-zero
function byte is encountered or all the bytes in the source field
have been examined. The results of the operation are returned
in VAL224-B, VAL225-228-B and PTR. If no non-zero function
bytes were encountered or if the length value in the third
operand is zero, then VAL224-B and VAL225-228-B are both
zero and PTR is unchanged. The character values are then
converted into the binary field equivalent in the second
operand. If a non-zero function byte is encountered, then it is
returned in VAL224-B, the number of bytes scanned is
returned in VAL225-228-B, and PTR points to the byte in the
source that resulted in the non-zero function byte. If the length
value in the third operand is not a multiple of 2, a value of
X'FFFFFFFF' is returned in VAL225-228-B.

flddef1 Source data to be converted.

TO Required noise word.

flddef2 Converted data.

flddef3
X'...'

Optional. A 2 or 4-byte binary field indicating the number of
bytes to be converted. If this operand is omitted, then the
length of the source field is used.

Statement Format 3–53

HEXCOND

Example
EQU FILLER WST0
EQU FLDA (272)
EQU FLDA
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FILLER (16) C'0123456789ABCDEF'
EQU FLDB (200)
 HEXCOND FLDA TO FLDB
 PRINTHEX FLDB

 WST273-472

 02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE0246
 13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF13579BDF1357
 01..05...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80...85...90...95..100

 8ACE02468ACE02468ACE02468ACE02468ACE00
 9BDF13579BDF13579BDF13579BDF13579BDF00
101..05...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80...85...90...95..100

3–54 VISION:Report Reference Guide

HEXEXPD

HEXEXPD
HEXEXPD flddef1 WITH flddef2 { flddef3 | X'...' }

Term Description

HEXEXPD Each byte of the binary data in the source is converted into a 2-
byte character equivalent in the target. The source field
remains unchanged.

flddef1 Source data to be converted.

TO Required noise word.

flddef2 Converted data.

flddef3
X'...'

Optional. A 2 or 4-byte binary field indicating the number of
bytes to be translated. If this operand is omitted, then the
length of the source field is used.

Example
EQU FILLER WST0
EQU FLDA (18)
EQU FLDA
EQU FILLER (16) X'0123456789ABCDEF0123456789ABCDEF'
EQU FILLER (16) X'0123456789ABCDEF0123456789ABCDEF'
EQU FLDB (100)
 HEXEXPD FLDA TO FLDB
 PRINTHEX FLDB

 WST33-132 0123456789ABCDEF0123456789ABCDEF0123

FFFFFFFFFFCCCCCCFFFFFFFFFFCCCCCCFFFF00

01234567891234560123456789123456012300

01..05...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80...85...90...95..100

Statement Format 3–55

IF

IF
Note: This is the simple IF statement. Note that AND/OR logic requires the
IF clause at the beginning of each sentence. See General Rules, Rule K for
more information about true condition processing, regarding the usage of a
period. (For the compound IF statement, see IF (Compound).

IF flddef1 [IS] [NOT]
{EQ|LT|GT|ONTABLE|ALPHA|NUMERIC|ZERO|BLANK|SPACE|HIVALUE|LOVALUE} [TO]
{flddef2|C'xxx'|P'nnn'|X'...'|ZERO|BLANK|SPACE|HIVALUE|LOVALUE} {AND|OR}

Term Description

IF Compares the contents of a flddef1 against flddef2, a literal, or
a constant. If the relationship or condition stated is found to be
true, continue processing with the next statement. If the
relationship is found to be false, transfer to the next sentence
(statement following true processing). (See General Rules, Rule
K for more information about true condition processing.)

flddef1 Comparison field. Define the area/field flddef to be compared.
See the relationship and literal operands for length limits.

IS Required noise word.

NOT The relationship sought is reversed.

3–56 VISION:Report Reference Guide

IF

Term Description

condition Enter the relationship that establishes a true condition (see
General Rules, Rule L). ZERO, BLANK, SPACE, HIVALUE,
and LOVALUE are limited to the size of the comparison field.

EQ The comparison field is equal to flddef2.

LT The comparison field is less than flddef2.

GE The comparison field is greater than or equal to
flddef2.

GT The comparison field is greater than flddef2.

ONTABLE The comparison field is present, as an argument,
in the user table. If functions for each argument
are in the table, a match against the table causes
the function to move to the FUN area. ALPHA

NUMERIC The comparison field is all numeric, except the
low order position which may have a sign. If the
comparison field is packed, it is unpacked into a
VISION:Report work area and the compare is
made against that work area. See Numeric
Comparison.

ZERO The comparison field is all zeros.

BLANK The comparison field is all blanks.

SPACE The comparison field is all spaces.

HIVALUE The comparison field is all hex FF.

LOVALUE The comparison field is all hex 00.

TO Required noise word.

Statement Format 3–57

IF

Term Description

flddef2
C'xxx'
P'nnn'
X'...'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

An area/field flddef against which the comparison field is to
be compared. This field does not have to be the same length
and format as the comparison field. Up to 2-gigabyte
characters on EBCDIC fields and up to 10 bytes on packed
fields.

Literal field. The following literals may be used only when EQ,
GT, or LT is specified. Enter:

C'xxxx' An EBCDIC literal up to 25 characters long.

P'xxxx' A packed literal up to 10 bytes long.

X'xxxx' A hexadecimal literal up to 12 bytes long. All
entries must be in the range 0 through F.

The following figurative constants can only be used when EQ,
LT, or GT is specified as the relationship operand and limited
only by field size:

SPACE The comparison field is all spaces.

BLANK The comparison field is all blank.

ZERO The comparison field is all zeros.

HIVALUE The comparison field is all hex FF.

LOVALUE The comparison field is all hex 00.

3–58 VISION:Report Reference Guide

IF

Term Description

AND
OR

When multiple or nested IF statements are used, this operand
indicates whether the relationship between each IF is OR or
AND. WHEN statements may be interspersed with IF
statements.

OR Logic

The use of the OR connective is valid only when any
number of IF...OR statements are followed by an IF
statement. This is necessary to indicate the end of the OR
logic. Any IF statements that follow it are not part of the
preceding OR logic.

A found false condition causes the program to fall
through to the next statement which must be an IF or
WHEN. If the word OR is not included, a found true
condition causes fall through to the next statement while
a found false condition causes transfer to the next
sentence.

AND Logic

If the word OR is not included, all multiple occurrences of
IF statements must meet the conditions before the true
statements are executed. (AND is inferred if OR is not
present. AND may be specified for readability.)

If an IF statement fails, a fall through occurs to the next
sentence — periods indicate the end of true condition
processing (IF or WHEN) and identifies the next
statement as the beginning of false processing (ELSE).

If FLDA equals A, B, or C, the true branch is to statement
50.

 10 MOVE C'FALSE' TO PRT1
20 IF FLDA EQ C'A' OR
30 IF FLDA EQ C'B' OR True
40 IF FLDA EQ C'C'
50 IF FLDB EQ C'1'
60 IF FLDC EQ C'$'
70 MOVE C'TRUE' TO PRT1.
80 PRINT

If FLDA equals X, the false branch is to statement 80.

10 MOVE C'FALSE' TO PRT1
20 IF FLDA EQ C'A' OR
30 IF FLDA EQ C'B' OR False
40 IF FLDA EQ C'C'
50 IF FLDB EQ C'1'
60 IF FLDC EQ C'$'
70 MOVE C'TRUE' TO PRT1.

 80 PRINT

Statement Format 3–59

IF

Example
090 IF INF1 IS EQ C '_' /* When all
100 IF INF20-21 IS EQ C'98' /* Three IF
110 IF WST10 IS EQ C'?' /* Statements are true,
120 MOVE INF1-80 TO PRT1 /* Statements
130 PRINT /* 120 through 140
140 GOTO 010. /* Are executed.
150 MOVE INF1-80 TO OFD1 /* When one or more are false,
160 * /* Control goes to statement 150

Arithmetic Comparison

When using IF statements involving arithmetic fields, comparison should be
done in packed decimal format. This is the only way to compare numeric values
with the signs of the two fields taken into account.

The following examples illustrate this point and also show the technique for
testing for negative and/or positive fields:

IF WST11-15-P IS LT P'0' /* Negative? (less than zero)

IF WST11-15-P IS GT P'0' /* Positive? (greater than zero)

Numeric Comparison

When using IF statements in conjunction with the NUMERIC test, you must be
aware of the contents of flddef. The following example illustrates this point and
also shows the technique for testing numeric fields:

EQU FLD1 WST1-4 C'123B' /* X'F1F2F3C2'
EQU FLD2 WST5-9
EQU FLD2 /* Redefines FLD2
EQU FL2A WST5-8
EQU FL2B WST9 ZEROS

..

IF FLD1 NOT NUMERIC /* A X'F1F2F3C2' is numeric (from unpacking?)
 PRINTHEX FLD1 /* Should not print
 GOTO xxx.
MOVE FLD1 TO FL2A /* Move to work area
IF FLD2 IS NOT NUMERIC /* A X'F1F2F3C2F0' is not numeric
 PRINTHEX FLD2. /* Should print

The printout shows:

WST5-9 123B0
 FFFCF
 12320
 01..05

3–60 VISION:Report Reference Guide

IF

In the previous example, the first comparison for numeric finds that FLD1 is
numeric. FLD1 may have been created from a COBOL program with a
PICTURE S9(4) (or it could be a packed field unpacked into FLD1.) Since there
is a valid sign in the low order position (X'C2'), FLD1 is a numeric field. After
the MOVE statement, a numeric check of FLD2 shows that FLD2 is not numeric,
as X'F1F2F3C2F0' is not considered numeric.

The previous example illustrates how to check for numeric fields where the low
order position might have a sign. Note that a zone or sign of X'Dn' in the low
order position is also valid (a negative number) just as a zone or sign of X'Cn' is
considered positive.

C0 - C9 are positive numbers

D0 - D9 are negative numbers

Statement Format 3–61

IF (Compound)

IF (Compound)
Note: This is the compound IF statement. For the simple IF statement, see IF.

(compound condition)

A compound IF statement is formed by enclosing a compound condition with a
preceding left parenthesis and a trailing right parenthesis.

A compound condition is the combination of a number of relation conditions
joined by a number of enclosing parentheses and the logical operators AND and
OR following the rules of logic.

A relation condition is composed of two operands joined by a relational
operator. Relational operators include:

= equal

> greater than

< less than

>= greater than or equal

<= less than or equal

<> not equal

An operand is any QUIKJOB field definition or EQUate.

The compound IF statement follows the standard hierarchical rules for
compound conditionals:

1. Conditions surrounding the word AND are evaluated first.

2. Conditions surrounding the word OR are evaluated last.

3. When there are several AND or OR logical operators, the AND
conditions are evaluated first, as they appear in the statement, from left
to right. Then the OR conditions are evaluated, also from left to right.

4. To override rules 1-3, use parentheses around the conditions to be
evaluated first.

3–62 VISION:Report Reference Guide

IF (Compound)

Example (Compounding):

EQU FILLER WST0
EQU FLDA (1)-P P'1'
EQU FLDB (2)-P P'-1'
EQU FLDC (2)-P P'1'
EQU FLDD (1)-P P'1'
EQU FLDE (1)-P P'1'
EQU FLDF (1)-P P'1'
EQU FLDG (1)-P P'1'
 IF FLDA = FLDA
 IF (
 (
 (FLDB TMP FLDC AND
 FLDC = FLDC OR
 FLDD = FLDD) OR
 (FLDE = FLDE OR
 FLDF = FLDF) AND
 (FLDE = FLDE OR
 FLDF = FLDF) AND
 FLDG = FLDG
) AND FLDC = FLDC
)
 GOTO 999.
999 GOTO EOJ

Bit Testing

IF invokes the TEST UNDER MASK machine operation by specifying a field size
of one byte and the following relational operators (see also the section Example
46 in Chapter 4):

■ TMO = ones

■ TMZ = zero

■ TMNZ = not zero

■ TMM = mixed

IF invokes the TEST UNDER MASK LOW machine operation by specifying a
field size of two bytes and the following relational operators (see also the section
Example 46 in Chapter 4):

■ TMO = ones

■ TMZ = zero

■ TMNZ = not zero

■ TMM = mixed and leftmost bit is zero

■ TMP = mixed and leftmost bit is one

Statement Format 3–63

IF (Compound)

String Scanning

You can imbed the parameters for a WHEN statement in a compound IF
statement. See TRNT FLDA WITH FLDB
 PRINTHEX FLDA
 PRINTHEX PTR1
 PRINTHEX VAL224-228

 WST1-20 BLUEJAYS EAT PEANUTS

 CDECDCEE4CCE4DCCDEEE

 23451182051307515432

 01..05...10...15...20

 PTR1-1 E

 C

 5

 01

 VAL224-228

 00000

 10004

 01..05

WHEN for an explanation of the parameters.

Numeric Comparison

The IF statement can now do a numeric compare between unlike data types,
such as character and packed. This may not produce the results that you desire.
If you want to ensure that the comparisons are made prior to VISION:Report
Release 16.0, use OPTION IFNUM=NO (normal default). See OPTION
parameters.

ELSE and ENDIF

You can code false case logic by using an ELSE statement following the last
statement in the true case and by using an ENDIF or a period following the last
statement in the false case. The true case logic will branch to the statement
following the ENDIF or period.

IF condition-1
 do-something-x
 [do-something-n]
ELSE
 do-something-y
 [do-something-n]
ENDIF

■ An IF statement can be terminated by an ENDIF statement or a period (.).

■ The use of an ENDIF statement and a period together is redundant.

■ A period will terminate all preceding IF statements. An ENDIF statement
will terminate only a single IF statement; IF/ENDIF statements must be
paired.

3–64 VISION:Report Reference Guide

IF (Compound)

Example:

■ If WS-SUB equals zero, move 5 to WS-FLD1 and ABC to WS-FLD2

■ If WS-SUB is not zero, WS-FLD1 would have a 7 and WS-FLD2 would have
XYZ.

IF WS-SUB = ZERO
 MOVE C’5’ TO WS-FLD1
 MOVE C’ABC’ TO WS-FLD2
ELSE
 MOVE C’7’ TO WS-FLD1
 MOVE C’XYZ’ TO WS-FLD2.

Nested IF Syntax
IF (condition-1 [AND condition-2)] [OR condition-3]
 do-something-1
 [do-something-n]
 IF condition-4
 do-something-3
 [do-something-n]
 END-IF
ELSE
 do-something-5
 [do-something-n]
ENDIF.

Example:

If (WS-SUB equals zero and WS-X is greater than 3
 /* together, one condition above
OR WS-X equals zero) /* or this condition
MOVE 5 to WS-FLD1 /* end of first IF validation
 If WS-IDX is greater than a packed 7 /* second condition
 move 3 to WS-FLD3, move packed 4 to WS-FLD4
MOVE ABC to WS-FLD2
 /* gets executed regardless of any above IF conditions

If none of the above IF conditions are true, then execute the
following:
MOVE 7 to WS-FLD1
MOVE XYZ to WS-FLD2

IF ((WS-SUB = ZERO AND WS-X > 3) OR WS-X = 0)
 MOVE C’5’ TO WS-FLD1
 IF WS-IDX > P’7’
 MOVE C’3’ TO WS-FLD3
 MOVE P’4’ TO WS-FLD4
END-IF
 MOVE C’ABC’ TO WS-FLD2
ELSE
 MOVE C’7’ TO WS-FLD1
 MOVE C’XYZ’ TO WS-FLD2
ENDIF.

Example:

IF (WST1 = C'1' OR WST2 = C'1') AND
 IF WST3 = C'7'

Statement Format 3–65

IF (Compound)

 MOVE WST1-3 TO WST5-7
 ENDIF.

Note: The period after ENDIF terminates all preceding IF statements. We recommend
that you use the following example.

Example:

IF (WST1 = C'1' OR WST2 = C'1') AND
 IF WST3 = C'7'
 MOVE WST1-3 TO WST5-7
 ENDIF
ENDIF

In the above example, the two ENDIF statements are correctly balanced and the last
ENDIF terminates all preceding IF statements. We recommend that IF/ENDIF be
paired, rather than having an imbalance and terminating with a period.

Example:

IF ((FLDA = FLDB OR FLDC = FLDD) AND
 FLDE = FLDF)
 MOVE C'A=B OR C=D, E=F' TO PRT1
ENDIF

Example:

IF WST1 = C'1'
 MOVE WST1-3 TO WST5-7
ELSE
 MOVE WST5-6 TO WST7-8.

Nesting ELSE and ENDIF

IF allows nesting by the use of ELSE and ENDIF statements. Periods should not
be used in combination with nesting statements.

Example (Nesting ELSE, ENDIF):

 IF FLDB = FLDB
 MOVE C'AAAAA' TO PRT20
 IF FLDB = FLDB
 MOVE C'BBBBB' TO PRT30
 ELSE
 MOVE C'CCCCC' TO PRT30
 ENDIF
 ELSE
 MOVE C'DDDDD' TO PRT40.

 IF FLDB = FLDB
 MOVE C'EEEEE' TO PRT40
 ELSE
 MOVE C'FFFFF' TO PRT50
 ENDIF
 ENDIF
 PRINT

3–66 VISION:Report Reference Guide

LIMITREADS

IF allows the numerical comparison of unlike numerical formats, zoned, packed
and binary, and unlike field sizes. If either of the fields is not numeric then a
logical comparison is performed.

LIMITREADS
LIMITREADS nnnnnnn {INF|INA-INZ|DET}

This statement is declarative and therefore cannot be the subject of a transfer in
control statement (for example, GOTO, PERFORM).

Term Description

LIMITREADS Limits the number of records read for a given file. This
feature is useful for building test files, checking EOF logic
with multiple input files, and testing reports to ensure control
level totals occur correctly.

nnnnnnn Maximum number of records VISION:Report reads from the
specified input file.

INA-INZ, DET File to be limited. INF is the default.

When the limit has been reached for the file or EOF occurs, VISION:Report
places high-values (X'FF') in the input record area and an E in the VAL area to
indicate EOF has occurred.

If the ATEND operand is specified on the GET statement or the ATEND
statement was used, VISION:Report transfers to your end of file code.

If INF is the only input file and neither the ATEND operand on the GET nor the
ATEND statement was used, VISION:Report proceeds to normal end of job
processing.

If the specified file is closed and opened again, the LIMITREADS resets back to
the original limit.

When using multiple input files, you are responsible for determining end of file
and end of job. See GET for more information about end of file processing.

Examples
005 LIMITREADS 1000 INC
010 GET INC ATEND EOJ
020 MOVE INC1-100 TO OFA1
030 WRITE OFA
040 GOTO 010

Statement Format 3–67

LINECOUNT

In the previous example, the INC file is read and pulls the first 1000 records.
When the 1001 record is read, VISION:Report proceeds to normal EOJ.

005 LIMITREADS 1000 INC
008 SAMPLE 10 INC
010 GET INC ATEND EOJ
020 MOVE INC1-100 TO OFA1
030 WRITE OFA
040 GOTO 010

This example is the same as the first, except for statement 008. A SAMPLE
statement is used that causes, for example, the first, eleventh, record to be
passed for processing. Only SAMPLE records passed determine the
LIMITREADS count.

LINECOUNT
LINECOUNT {nnn|NONE}

Term Description

LINECOUNT Overrides the lines per page specified in the PRNTLCT option.

nnn Enter a 1- to 3-digit value representing the number of lines to
be printed on each page before automatic page ejection occurs.

NONE If the word NONE is coded, the line count is to be ignored
completely, giving you a page of infinite length.

LCT1-2-P contains the number of unused or available lines for use on the
current page. In the following example, a page eject is forced if LCT1-2-P is less
than 12.

Example
IF LCT1-2-P IS LT P'12'
 DOHEADERS.
 processing statements

3–68 VISION:Report Reference Guide

LOAD

LOAD
LOAD user-routine-name PTx

Term Description

LOAD Loads a user coded routine at execution time. Unlike the CALL
statement, control is not passed to the routine, but instead a
pointer is set to point to the first byte in the routine. The length
of the routine is posted in VAL205-208 in binary format.

user- routine-
name

Enter the name of the user routine to be loaded. The contents
of this operand are used to retrieve the module from the VSE
library.sublibrary or the appropriate MVS load library and
must match exactly the name under which the routine was
cataloged.

PTx This operand must be one of the PTx index pointers (PTA, PTB,
PTC, PTD, or PTR). It is set to point to the first byte of the
routine.

The LOAD statement is normally used in those applications where a program
was compiled and link edited. The program may also contain constants (DC) to
be used as a table only with no executable code. The default VISION:Report
translate table (see VISION:Report OPTION Keywords, TRLNAME) and
default extended edit mask table (see VISION:Report OPTION Keywords,
EDTNAME) are examples of non-executable routines.

Any number of references may be made to the same routine by either LOAD or
CALL statements. However, only one actual loading of the routine from the
library takes place.

Example
100 LOAD QUIKEMSK PTA /* MVS; if VSE, QUKBEMSK

This statement causes the module QUIKEMSK to be loaded, if not already
loaded, places the address of the first byte of the routine in the PTA pointer, and
places the binary length of the module in VAL205-208.

Statement Format 3–69

MOVCOND

MOVCOND
MOVCOND flddef1 TO flddef2

Term Description

MOVCOND Condenses the 8-byte string of EBCDIC zeros and ones (F0/F1)
in the source field to a single byte field with bit settings
according to zero and one composition.

flddef1 Source field. Define an 8-byte field that must be comprised
entirely of EBCDIC zeros (F0) and EBCDIC ones (F1).

TO Required noise word.

flddef2 Result field. Define a 1-byte field into which the condensed
source field is to be placed.

MOVCOND examines each byte of the source field from left to right and
constructs a single byte, with bit 0 set to zero (if the leftmost source byte was
zero) and with bit 0 set to 1 (if the leftmost source byte was one).

This evaluation and construction continues towards the right until all 8-byte/bit
positions have been considered.

Examples
 Source Condensed
 00000000 X'00'
 10000000 X'80'
 00000100 X'04'

3–70 VISION:Report Reference Guide

MOVE

MOVE
MOVE {flddef1|C'xxx'|P'nnn'|X'...'|ZERO|BLANK|SPACE|HIVALUE|LOVALUE} TO flddef2
[nC|nE|nN]

Term Description

MOVE Moves a data field or constant from any area to any other area.
Editing and zero suppression are optionally available for
numeric fields. See MOVE (Expanded Editing) for editing of
non-quantitative fields. See MOVE (Variable Length) for
moving variable length fields.

flddef1
C'xxx'
P'nnn'
X'...'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

Describes the sending field.

■ A standard field definition or equated data name for data
fields.

■ A character literal (C'xxx') up to 40 characters.

■ A packed literal (P'nnn') up to 15 digits in 8 bytes.

■ A hexadecimal literal (X'....') from 2 to 72 hexadecimal
digits (36 bytes).

■ Constants (BLANK, SPACE, ZERO, LOVALUE,
HIVALUE). (See General Rules, Rule L.)

flddef2 Describes the receiving field as a standard field definition or
equated data name. When the sending field has a character
format or when editing to PRT, you need only define the
starting position of the receiving field.

More detailed coding rules for the sending and receiving fields are provided on
the following pages.

Statement Format 3–71

MOVE

Coding Rules Description

nC, nE, nN If moving to the PRT area (or any other area if EDITALL=YES)
and editing and zero suppression is desired, code a 1- or 2-
character field as follows: If a decimal point is to appear in a
number, code a number in the range of 0 through 9 to indicate
how many digits are to appear to the right of the decimal point.

Code a C if commas are to be inserted as appropriate.

Code an E if the European variation of commas/decimal are to
appear.

Code an N if zero suppression is not to be performed.

If using an equated name, the edit code may be stated in the
EQU statement. If moving to PRT and if this operand is blank
and the equated name has appended to it an edit code, that
edit code is used; otherwise this operand is used. (See EQU for
more information.)

Examples
 2C Print 2 decimal positions and insert commas as appropriate.
 1 Print 1 decimal point. No commas are shown.
 C No decimal point is shown but commas are inserted.
 0N No decimal point is shown, and zeros are not suppressed.

The option EDITALL increases the power in moving of fields with edit masks to
areas other than the PRT area. If EDITALL=NO, then the edit masks or codes
are only in effect if the target area is PRT. If EDITALL=YES, then the edit codes
would affect all areas. Check with the person that installed VISION:Report to
find out what option was installed as the default.

Warning: When the MOVE statement is used, the length of the target fields
are ignored when moving character data. Target field length is honored
only when moving a figurative constant such as SPACES or numeric data in
packed format. Care must be taken to ensure that the length of the source
field is correct, or else unpredictable results will occur when neighboring
storage is overlaid, possibly resulting in abnormal terminations such as
addressing, operation, or protection exceptions, depending upon the usage
of the storage that is corrupted.

3–72 VISION:Report Reference Guide

MOVE

The allocation of storage and its placement for different releases of
VISION:Report and the operating system will vary. Programs that were
working under one release of VISION:Report and/or operating system can fail
when either is upgraded. In the case of I/O areas, only the specified record size
will be obtained. The following example will illustrate this, with several
assumptions:

You issue a SET PTD to various locations within VISION:Report area OFA. The
OFA area is 157 bytes long. The work field, WK-DATA2, is 100 bytes long. You
issue the following instructions:

SET PTD OFA2
...
MOVE WK-DATA2 TO PTD65 /* (1)
MOVE WK-DATA2 TO PTD116 /* (2)

The first MOVE instruction would move data to OFA67-166, which is nine bytes
longer than the length of OFA. Thus, storage following area OFA, which was
157 bytes, would be corrupted, and as mentioned above, the results would be
completely unpredictable.

The second MOVE instruction would move data to OFA118-217, which is
considerably more than what you would really want to move, with
unpredictable results again.

You should correct the VISION:Report statements above to move only as much
data as will not extend beyond the 157th byte of area OFA. One solution would
be to use a variable length MOVE statement such as:

EQU DATA-LENGTH WST300-301-B
...
MOVE WK-DATA2 TO PTD65 DATA-LENGTH

You would have to know or be able to compute the remaining length of the
field, and then insert the value into DATA-LENGTH. See MOVE (Variable
Length).

Another solution is to build the OFA record in a work area that has extra
available storage at the end, and then move 157 bytes of the work area to OFA.
With this method, you do not need to worry about corrupting storage not
belonging to VISION:Report or computing the length of each move to the OFA
record.

Statement Format 3–73

MOVE

Data Conversion

The option MOVCVTX increases the power of moving literal X'....' to the target
area, depending upon the target area data type. The default of MOVCVTX is
NO. If MOVCVTX=YES, then the literal X'....' is converted according to the
target area data type. Check with the person that installed VISION:Report to
find out what option was installed as the default. Some examples follow (where
xxxx represents whatever was in memory prior to the MOVE):

Sending Field

Receiving Field

MOVCVTX=NO
Results

MOVCVTX=YES
Results

X'012C' WST1-2-P X'012C' X'300C'

X'012C' WST1-2-B X'012C' X'012C'

X'012C' WST1-4-P X'012Cxxxx' X'0000300C'

X'012C' WST1-4-B X'012Cxxxx' X'0000012C'

X'012C' WST1-4 X'012Cxxxx' X'F0F3F0F0'

Detailed Coding Rules

Single quotation marks may be embedded in character literals by coding two
consecutive quotation marks to indicate one data quotation mark. Thus C'''250'''
generates as '250'.

Valid examples and results with single quotation marks in literal and the
results:

MOVE C'''''' TO FLD1 /* Results: '' (2 QUOTES)
MOVE C'''1''' TO FLD1 /* Results: '1' (QUOTE,1,QUOTE)
MOVE C''' ''' TO FLD1 /* Results: ' ' (QUOTE,BLANK,QUOTE)
MOVE C'''' TO FLD1 /* Results: ' (1 QUOTE)
MOVE C'''250''' TO FLD1 /* Results: '250' (250 WITHIN QUOTES)

Negative values can be coded in packed literals by placing a hyphen followed
by numeric digits. The same effect can be achieved by coding the character J for
-1; K for -2; L for -3; and so forth through R for -9 (as the last digit).

One of the constants (ZERO, SPACE, BLANK, LOVALUE, HIVALUE) may be
specified in the sending field. There is no length restriction on constants.

An EBCDIC to EBCDIC MOVE can be up to 2-gigabytes long and is executed in
a single coded MOVE. Internally, it is executed from left to right using repeated
MOVE instructions.

EBCDIC fields can be transformed to packed or binary by defining the receiving
field with a -P or -B suffix.

3–74 VISION:Report Reference Guide

MOVE

EBCDIC fields (up to 19 bytes long) may be edited to the print line (PRT area)
by including editing and zero suppression specifications.

A packed field (up to 10 bytes) can be transformed to EBCDIC or binary or
could be edited to the print line (PRT area) by including editing and zero
suppression specifications.

Binary fields may be transformed to EBCDIC or packed and may also be edited
to the print line (PRT area) by including editing and zero suppression
specifications. Binary sending fields may be 1-to 8-bytes long.

Options

BLANK WHEN ZERO (BWZ) is a VISION:Report option that suppresses
printing zero-filled counters.

■ If OPTION BWZ=NO is in effect, an ACCUM statement specifying 2C
prints as .00.

■ If OPTION BWZ=YES is in effect, an ACCUM statement specifying 2C
prints as a blank field.

You also have the option of designating whether or not negative amounts in
counters print with a negative sign (-) or credit character (CR).

■ If OPTION CRSIGN=NO causes a negative sign to print, indicating a
negative counter.

■ If OPTION CRSIGN=YES causes CR to print, indicating a negative counter
count. The use of CR also requires one additional position to be used in the
print line.

MOVE Examples Using Various Editing Codes and Options

Statement Format 3–75

MOVE

 BWZ=NO, BWZ=YES,
 CRSIGN=NO CRSIGN=YES
OPERAND 3 SOURCE DATA EDITED RESULT EDITED RESULT

 000012345 000012345 000012345
0 000012345 12345 12345
0C 000012345 12,345 12,345
0C -000012345 12,345- 12,345CR

0E 000012345 12.345 12.345
0N 000012345 000012345 000012345
0N 000000000 000000000 000000000

1 000123456 12345.6 12345.6
1C 000123456 12,345.6 12,345.6
1C 000000000 .0

2 001020345 10203.45 10203.45
2C 001020345 10,2O3.45 10,203.45
2C -001020345 10,203.45- 10,203.45CR
2C 000000000 .00

2E 001122334 11.223,34 11.223,34
2E -001122334 11.223,34- 11.223,34CR
2E 000000000 ,00
2N 001122334 011223.34 0011223.34

3 009876543 9876.543 9876.543
3C 009876543 9,876.543 9,876.543
3C -009876543 9,876.543- 9,876.543CR
3C 000000000 .000

Samples and Rules

MOVE INF5-7 TO OFA10-12 Move input file positions 5-7 to output
A positions 10-12 (length of target is
ignored).

MOVE WST1-5-P TO PUN1-9 Unpack to EBCDIC format. F zone
forced on positive fields.

MOVE INF3-6 TO OFA1-3-P Pack EBCDIC. Limit of 19 digits source
field length, 10-byte packed destination
field.

MOVE INF14-20 TO PRT25 EBCDIC to EBCDIC. No TO element
required for PRT destination.

*MOVE INF15-20 TO PRT25 2C
MOVE INF15-20 TO PRT25 2E

EBCDIC to EBCDIC, but final operand
identifies a numeric source field that is
to be zero-suppressed in PRT and have
a decimal point inserted to the left of
the 2 low order print positions.

3–76 VISION:Report Reference Guide

MOVE

*MOVE WST1-3-P TO PRT30 3C
MOVE WST1-3-P TO PRT30 3E

Packed to EBCDIC in PRT with zero
suppression and a decimal point to be
inserted to the left of the 3 low order
print positions.

MOVE C'ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678912345' TO OFA1-40
 Limit of 40 characters (length of target
 is ignored).

MOVE P'15' TO OFX1-6-P Limit of 19 digits in literal and 10 bytes
in destination.

MOVE X'45E0' TO OFB1-2 Limit of 36 bytes in destination.

MOVE SPACES TO OFA1-300 No limit on length, BLANKS may also
be used.

MOVE INF5-10 TO WST1 The sending field (INF5-10) determines
the length of data movement where no
data conversion and/or editing is
required. Six positions are moved.

MOVE ZEROES TO WST1-5-P Limit of 10 bytes when moving to a
packed field. This example would have
packed zeros due to the P specification
on the destination field.

MOVE HIVALUES TO OFZ1-10000 No limit on length. Moves X'FF'.

MOVE LOVALUES TO OFB20-20000 No limit on length. Moves X'00'.

MOVE C'85' TO OFA1-2-B The B destination specification causes
the literal to be converted to the fixed
point binary representation of the C' '
value; in this case OFA1-2-B would be
set to X'0055', the binary representation
of decimal 85. The destination field
may be up to 8 bytes, with no
boundary alignment required.

MOVE INF15-20-P TO PRT25 2C Packed to print with editing. The C
after the 2 is optional and causes
commas to be inserted at the
appropriate places in the result.

* - The C operand in connection with the decimal operand when moving to the
printer is optional. When included, this causes commas to be inserted in the
appropriate places in the results. An E causes European punctuation to be
generated.

Statement Format 3–77

MOVE

MOVE INF1-5-B TO WST1-6-P **The B specification causes the 5-byte
binary field to be converted to packed
decimal. Binary fields of 1-8 bytes may
be converted to packed decimal.

MOVE INF1-2-B TO OFA78-83 **The B specification causes the 2-byte
binary field to be converted to zoned
decimal. Binary fields of 1-8 bytes may
be converted to zoned decimal.

MOVE WST7-10-B TO PRT11 0C Move binary fields of 1-8 bytes long to
print with editing.

** - It is your responsibility to specify a large enough receiving field for
conversion. Excess is truncated and no warning is given.

3–78 VISION:Report Reference Guide

MOVE

Move Allowable Forms

From To Allowable

EBCDIC EBCDIC Yes

EBCDIC Packed Yes

EBCDIC Binary Yes

EBCDIC Print No Edit Yes

EBCDIC Print Edit Yes

Packed Packed Yes

Packed EBCDIC Yes

Packed Print Edit Yes

Literal C'_' EBCDIC Yes

Literal C'nnn' Packed Yes

Literal C'nnn' Print No Edit Yes

Literal C'nnn' Print Edit Yes

Literal P'n' Packed Yes

Literal P'nnn' EBCDIC Yes

Literal P'nnn' Print No Edit Yes

Literal P'nnn' Print Edit Yes

Literal X'_' EBCDIC Yes (Limit of 36 bytes)

ZERO Packed Yes (Limit of 10 bytes)

SPACE,BLANK

ZERO,HIVALUE

LOVALUE EBCDIC Yes (No Length Limit)

Binary EBCDIC Zoned Decimal Yes

Binary Packed Decimal Yes

Binary Print Edit Yes

Statement Format 3–79

MOVE

Move Print Position Requirements

■ C inserts commas as appropriate.

■ E inserts a period before every third integer position, and a comma in the
decimal position.

The area required in the PRT area is:

■ One byte for each data byte.

■ One byte for a minus sign if CRSIGN=NO. Two bytes for the literal CR if
CRSIGN=YES.

■ One byte for every three integers if C or E is specified.

The use of option on CRSIGN=YES requires one additional print position to the
number indicated above.

Binary fields require print positions to accommodate the maximum digits
possible.

The number of decimal positions need to be accounted for in the total number of
print positions.

■ N suppresses leading zeros.

■ One byte for decimal point if decimals are specified.

Binary-Move Print Position Requirements

Data Length Binary Number of Digits

1 3

2 5

3 7

4 10

5 12

6 15

7 17

8 19

3–80 VISION:Report Reference Guide

MOVE (Variable Length)

MOVE (Variable Length)
MOVE {flddef1|C'xxx'|P'nnn'|X'...'|ZERO|BLANK|SPACE|HIVALUE|LOVALUE} TO flddef2
{flddef3|X'...'}

Term Description

MOVE Moves a data field or constant from any area to any other area
with a variable length on the move. Editing and zero
suppression are not applicable with a variable length move.

flddef1
C'xxx'
P'nnn'
X'...'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

Describes the sending field.

■ A standard field definition or equated data name for data
fields.

■ A character literal (C'xxx') up to 40 characters.

■ A packed literal (P'nnn') up to 19 digits in 10 bytes.

■ A hexadecimal literal (X'....') from 2 to 72 hexadecimal
digits (36 bytes).

■ Constants (BLANK, SPACE, ZERO, LOVALUE,
HIVALUE). (See General Rules, Rule L.)

TO Required noise word.

flddef2 Describes the receiving field as a standard field definition or
equated data name. You need only define the starting position
of the receiving field. Sending and receiving fields must be in
the same format. However, hexadecimal fields may be moved
to character fields.

flddef3
X'...'

Describes this operand as a standard field definition, an
equated data name, or hexadecimal literal. This flddef must be
a 2-byte or 4-byte binary field that contains the desired length
of the number of bytes to be moved.

If an equated data name is used, the name must be at least three characters long,
or you can get unpredictable results.

Note: No data format transformation occurs from the sending to receiving
operands, unless the sending field is a hexadecimal literal (X'...') and the option
is MOVCVTX=YES. It is important to maintain data integrity. Moves made from
one field to another without regard to formats could result in damaged data (for
example, dropping the sign portion of a packed field) that can cause
VISION:Report errors.

Statement Format 3–81

MOVE (Variable Length)

Example
010 GET INF ATEND EOJ /* Get fixed length record
020 WHEN INF1-80 INCLUDES X'FF' /* Find end of fixed record
030 MOVE INF1 TO OFA5 VAL225-228-B /* Move fixed RCD to variable OFA
040 MOVE VAL227-228-B TO OFA1-2-B /* Move RCD length to OFA1
050 WRITE OFA. /* Write OFA
060 GO TO 010 /* Go back and get next record

Statement 030 shows a variable length move from INF1 to OFA5, depending
upon the contents of VAL225-228-B.

3–82 VISION:Report Reference Guide

MOVE (Expanded Editing)

MOVE (Expanded Editing)
MOVE {flddef1|C'xxx'|P'nnn'|X'...'} TO flddef2 mask-code

Term Description

MOVE Moves a data field from one location to another and edits the
data into a prescribed pattern. This function is used to move
dates, times, social security numbers, and telephone numbers
to a target area, inserting hyphens, slashes, and periods. An
edit mask pattern determines the placement of source data and
punctuation insertion. This MOVE with expanded editing is for
moving non-quantitative fields.

flddef1
C'xxx'
P'nnn'
X'...'

Source data to be moved and edited. This field can be:

■ A character literal up to 40 bytes long.

■ An EBCDIC field up to 63 bytes long.

■ A binary field from 1 to 8 bytes long.

■ A packed field with a maximum of 10 bytes long.

Also, the expanded MOVE statement automatically handles a
packed unsigned (no sign) field and treats it as a positive field.

TO Required noise word.

flddef2 Area/field for the edited result. Usually, this is PRT, but any
VISION:Report area is valid. The length of the result field
equals the length of the mask-code.

mask-code An alphabetic character from the table that follows, or a
character assigned for a special purpose or use at your
installation. The letters C, E, or N cannot be used for a mask
code since these are used by VISION:Report to designate
decimal and comma punctuation.

If an equated data name is used, the name must be at least three characters long
or you will get unpredictable results.

The option EDITALL increases the power for moving fields with edit masks to
areas other than the PRT area. If EDITALL=NO, then the edit masks or codes
are only in effect if the target area is PRT. If EDITALL=YES, then the edit codes
would affect all areas. Check with the person that installed VISION:Report to
find out what option was installed as the default.

Statement Format 3–83

MOVE (Expanded Editing)

Examples

Sending
Field

Receiving
Field

EDITALL=NO
Results

EDITALL=YES
Results

123456789 PRT1 S '123-45-6789' '123-45-6789' (11 bytes)

123456789 OFA1 S Not accepted '123-45-6789' (11 bytes)

Edit Mask Patterns

Nine commonly used edit mask patterns are distributed with the
VISION:Report system. The systems programmer or person in charge of
software systems has the necessary information to add or change edit mask
patterns as required for an installation’s needs.

An installation may have up to 23 different edit masks in any one mask table.
Multiple tables are allowed, but only one can be used for any execution of
VISION:Report. See EDTNAME OPTION in the OPTION statement.

The QJEDIT macro is furnished on the VISION:Report distribution tape for this
purpose. Mask patterns consist of data selector characters, and punctuation or
edit fill characters.

Data Selector Characters

The following characters are used to indicate positions in the output field that
contain characters from the input or source field.

Character Description

9 This character indicates that the output field position is a numeric
character. If the FORCE=YES (see Edit Mask Attributes) indicator
has been set, a 9-character is required in the low order selector
position of the mask.

Z This character has the same meaning and rules as the 9 except
leading zeros are suppressed (spaces are substituted) when
JUSTIFY=RIGHT (see Edit Mask Attributes).

X This character is used to indicate that the output field position
contains an alphanumeric character.

3–84 VISION:Report Reference Guide

MOVE (Expanded Editing)

Edit Fill Character

The character B when used in the mask causes a blank or space to be placed in
the output field position.

Punctuation Characters

Any character (other than the 9, Z, X, and B) appearing in the masks is
unchanged in the output field position it occupies.

Edit Mask Attributes

The following two operand parameters are optional. Default values are
indicated when they are omitted.

Operand Description

FORCE YES VISION:Report forces the sign of the field to be
positive, if the lower rightmost selector position
has a 9 or a Z in it.

NO This is the default value. No sign checking or
forcing is performed.

JUSTIFY This operand parameter may contain one, two, or three
sublist items. Each sublist item is a specification of one of
two possible parameters. If more than one item is entered,
the list must be enclosed in parentheses. The first item in
the list must be RIGHT or LEFT.

RIGHT This is the default value for this pair of
parameters. The data field is edited starting at the
right side of the pattern. The edit proceeds from
right to left.

LEFT The data field is edited starting at the left side of
the pattern. The edit proceeds from left to right.

Statement Format 3–85

MOVE (Expanded Editing)

One of the next item pairs may appear in either the second or third position of
the sublist.

Term Description

TRUNC Any data in excess of the data selector positions in the mask
pattern is truncated (dropped) without any checking or
warning.

NOTRUNC This is the default value of this item pair. Data in excess of the
mask pattern prompts VISION:Report to issue an error
message. VISION:Report allows one data position extra to
appear in the packed or binary field than in the edited output.

PROPGAT If the source field contains fewer characters than expected for
that edit mask pattern, VISION:Report propagates spaces
when JUSTIFY=LEFT, or propagates zeroes when
JUSTIFY=RIGHT, to complete the mask pattern in the output.

NOPROPGAT This is the default value for this item pair. VISION:Report
checks for a MOVE that has fewer characters of input than
what is expected for the output edited field. VISION:Report
allows one less data position if the data field is binary or
packed when this parameter is specified.

Source Field Data Formats

Term Description

EBCDIC The data field is edited into the mask pattern 1 byte at a time.
No packing of the data is done.

Packed The data field is unpacked into a work area. It is edited into the
mask pattern 1 byte at a time. The packed data field is tested to
see if it contains a valid sign in the low order half byte; one is
provided if necessary.

3–86 VISION:Report Reference Guide

MOVE (Expanded Editing)

Term Description

Binary The binary data is converted to EBCDIC format into an internal
work area. The data is then edited into the mask pattern, 1 byte
at a time. The following binary field lengths are assumed to
contain the number of digits indicated.

Field Size Number of Digits

 1 3
 2 5
 3 7
 4 10
 5 12
 6 15
 7 17
 8 19

Statement Format 3–87

MOVE (Expanded Editing)

VISION:Report Supplied Patterns and Attributes

Code Pattern Justify Truncate Propagate Force

A 99/99 Right Yes Yes Yes

B 99.99 Right Yes Yes Yes

D 99/99/99 Right Yes Yes Yes

F 99-99-99 Right Yes Yes Yes

G 99.99.99 Right Yes Yes Yes

H ZZ9 Right Yes Yes Yes

L 999-9999 Right Yes Yes Yes

S 999-99-9999 Right Yes Yes Yes

T 999-999-9999 Right Yes Yes Yes

U (999)B999-9999 Right Yes Yes Yes

Y 99/99/9999 Right Yes Yes Yes

Examples

Statement Source Result

MOVE INF1-6 TO PRT11 D 060196 06/01/96

MOVE INF1-6-P TO PRT11 T 05134359514 513-435-9514

MOVE INF26-31 TO PRT11 G 122536 12.25.36

MOVE INF1-4-P TO PRT24 A 0001296 12/96

MOVE INF1-4 TO PRT60 D 1296 00/12/96

In the following example, an edit mask with a code of W is developed to edit an
account number.

MASK 99-9999-999

JUSTIFY RIGHT

TRUNC NO

PROPAGAT NO

FORCE NO

3–88 VISION:Report Reference Guide

MOVE (Expanded Editing)

Statement Source Result

MOVE ACCOUNT-NO TO PRT10 W 019135731 01-9135-731

In the following example, an edit mask with a code of P is developed to edit a
part number.

MASK Z9-999BXXXBXX-9

JUSTIFY LEFT

TRUNC NO

PROPAGAT NO

FORCE NO

Statement Source Result

MOVE PART-NO TO PRT1 P 01347ABCGN3 1-347 ABC GN-3

In the following example, an edit mask with a code of R is developed to print
names with initials.

MASK X.BX.BXXXXXXXXXXXXXXXXXX

JUSTIFY LEFT

TRUNC YES

PROPAGAT YES

FORCE NO

Statement Source Result

MOVE DB-NAME TO PRT11
R

JASMITHE J. A. SMITHE

 CDJONES C. D. JONES

Statement Format 3–89

MOVEXPD

MOVEXPD
MOVEXPD flddef1 TO flddef2

Term Description

MOVEXPD Expands the 8 bits at the 1-byte source field into an 8-byte
EBCDIC string of zeros and ones.

flddef1 Defines a 1-byte field whose bits are to be expanded to bytes.

TO Required noise word.

flddef2 Defines an 8-byte field into which the expanded representation of
the source field is placed.

MOVEXPD examines each bit (left to right) of the source field. It translates the
value of each bit to a printable character (0 or 1) and replaces it at the
corresponding byte of the receiving field.

Example
Source Expanded

X'C1' X'F1F1F0F0F0F0F0F1'

3–90 VISION:Report Reference Guide

MOVNUM

MOVNUM
MOVNUM {flddef1|X'...'} TO flddef2

Term Description

MOVNU
M

Moves up to 2 gigabytes of binary numeric bits (4-7) from the
sending data field to the receiving data field.

flddef1
X'...'

Sending field. Defines the numeric bits (4-7) field to be moved to
receiving field.

TO Required noise word.

flddef2 Receiving field. The field that contains the numeric bits (4-7) after
the move.

Example
010 MOVNUM INF1-50 TO OFA1-50

The following statement forces a negative sign on a packed decimal field:

010 MOVNUM X'0D' TO INF4

To properly initialize a working storage area prior to a MOVNUM command,
the area should be initialized with hi-values (X'FF') or zeros (X'F0'). This will
then obtain positive results.

Example
MOVE HIVALUES TO WST1-8
MOVNUM INF1-8 TO WST1-8

Statement Format 3–91

MOVZON

MOVZON
MOVZON {flddef1|X'...'} TO flddef2

Term Description

MOVZON Moves up to 2 gigabytes of binary zone bits (0-3) from the
sending data field to the receiving data field.

flddef1
X'...'

Sending field. Defines the zone bits (0-3) field to be moved to the
receiving field.

TO Required noise word.

flddef2 Receiving field. The field that contains the zone bits (0-3) after
the move.

The following statement forces a negative sign over the units position of an
EBCDIC numeric field.

010 MOVZON X'D0' TO INF32

This sequence moves the sign from the high order position of a field (position
24) to the low order position of the field (position 32) and then clears the sign
from the high order position.

010 MOVZON INF24 TO INF32
020 MOVZON X'F0' TO INF24

Example
010 MOVZON INF1-50 TO OFA1-50

3–92 VISION:Report Reference Guide

MSHIFT

MSHIFT
MSHIFT {flddef1|C'nnn'} TO flddef2 n [LEFT|RIGHT] [R]

Term Description

MSHIFT Moves and shifts the data for scaling of numeric fields.

flddef1
C'nnn'

Source field that contains the numeric data to be moved and
shifted, coded in the standard area/definition format. Data
may be in EBCDIC format (maximum of 19 digits), packed
format (maximum of 10 bytes), or binary format (maximum of
8 bytes). You may code a character literal with a maximum of
11 digits in the constant.

TO Required noise word.

flddef2 Destination field, which has the same format and length
limitations as the source field. The actual shifting is done in a
work area, allowing sending and receiving locations to overlap
or be the same.

n Number of digits to be shifted in the data field, with a value
ranging from 0 through 9.

LEFT
RIGHT

Directional shift of the data.

LEFT adds zeros to the low order positions in the field. This, in
effect, is a multiplication by a factor of 10.

RIGHT truncates the low order positions of the field. This, in
effect, is a division by a factor of 10.

To determine the 10s factor, merely use n (number of digits) as
the exponent. For example, if n=3, then the factor is 10 x 10 x 10
or 1000.

R Rounds the data field contents. This only affects an MSHIFT
with a RIGHT direction shift.

The sign of the sending field is carried to the receiving field.

This statement is implemented for scaling use with VISION:Forms, but is
available for VISION:Report users as needed.

Examples
 Source Destination

MSHIFT INF11-12-P TO WST1-4-P 2 LEFT 123 0012300

MSHIFT CTA4-8-P TO WST21-26 4 RIGHT 000072044 000007

Statement Format 3–93

MULT

MULT
MULT flddef1 nD BY {flddef2|C'xxx'|P'nnn'|X'...'} nD GIVING flddef3 nD[R]

Term Description

MULT Multiplies the contents of flddef1 by the contents of flddef2, a
literal, or a constant, and stores the product in the field
defined by flddef3. Decimal alignment specifications are
required for all operands. Fields and literals in any data
format can be multiplied by fields in any other data format.
Automatic data conversion is performed in all cases.

flddef1 Multiplicand field in standard format. Data can be in EBCDIC
format (maximum of 19 digits), packed format (maximum of
10 bytes), or binary format (maximum of 8 bytes).

nD Number of decimal positions in multiplicand field (for
example, if the multiplicand field has 2 decimals, code 2D).

BY Required noise word.

flddef2
C’xxx’
P’nnn’
X’...’

Multiplier field in standard format with the same length
limitations as the multiplicand field. You can also code a
constant or a literal as the multiplier with a maximum of 11
digits in the constant of literal.

nD Number of decimal positions in the multiplier field

GIVING Required noise word.

flddef3 Product field in standard format with the same length
limitations as the multiplicand field.

nD Number of decimal positions in the product field.

R Rounds the product.

This keyword must immediately follow the nD keyword
(such as 2DR). There cannot be a space in between the two
keywords.

All multiplication and division is done internally in packed decimal. Fields to be
multiplied may be up to 10 bytes for packed decimal, 19 bytes for EBCDIC, and
8 bytes for binary. The product may be up to 10 bytes for packed decimal,
19 bytes for EBCDIC, and 8 bytes for binary (10 digits with a maximum value of
2,147,483,647 and a minimum value of -2,147,483,648). An attempt to compute a
binary product greater than 2,147,483,647 or less than -2,147,483,648 results in a
FIXED POINT DIVIDE exception.

3–94 VISION:Report Reference Guide

OPEN

OPEN
OPEN {INF|INA-INZ|DET|OFA-OFZ} [password] [RESET]

VISION:Report automatically opens all files that do not have an OPEN
statement.

Term Description

OPEN Defers the opening of an input or output file until you need it,
and allows a password to be supplied for protected VSAM
files. When used after a CLOSE statement allows an input or
output file to be reopened for additional processing.

INA-INZ
DET
OFA-OFZ

File name can be any VISION:Report input or output file name
(INF, OFA, INX, as examples) If this operand is left blank, INF
is assumed.

password If this operand is specified, the file must be a VSAM file and
the password must be 8 bytes, padded with spaces if
necessary. The password can be a field definition, a character
literal, or a hexadecimal literal.

RESET Overwrites the existing contents of an output VSAM file
defined with REUSE.

The checking by VISION:Report to ensure that a reference to a file area is not
greater than the record size (ERR208) is delayed until the OPEN statement is
executed.

Statement Format 3–95

OPEN

Example

Valid:

005 MOVE ZEROES TO WST1-2 /* Clear file flags
010 GET DET /* File opened automatically
020 IF DET1-3 IS EQ C'INC' /* Want to open INC?
030 MOVE C'1' to WST1
040 OPEN INC /* Open
050 GOTO 100.
060 IF DET1-3 IS EQ C'IND' /* Want to open IND?
070 MOVE C'1' to WST2
080 OPEN IND /* Open
085 GOTO 100.
095 OPEN INF /* Open INF. (INF did not need to
100 Processing statements /* be specified. It opens by default.)

010 GET INC ATEND 100 /* File automatically open
 Processing statements
100 CLOSE INC
110 OPEN INC
120 GET INC ATEND EOJ
 Processing statements
010 GET INF ATEND 100
 Processing statements
100 OPEN DET
110 GET DET ATEND EOJ
 Processing statements

Invalid:

010 GET DET ATEND 100
 Processing statements
100 OPEN DET
110 GET DET ATEND EOJ
 Processing statements

A CLOSE statement is required at statement 100 followed by an OPEN
statement.

Note: If a file is OPENed, it should also be CLOSEd.

3–96 VISION:Report Reference Guide

OPTION

OPTION
OPTION keyword={nnnn|YES|NO|name} [,keyword={nnnn|YES|NO|name}] ...

Term Description

OPTION Overrides or changes various control functions for one execution of
VISION:Report. If used, VISION:Report OPTION statements must
be the first statements.

keyword= Defines which option to override. See Summary of Job Options and
the section following for detailed descriptions of each keyword’s
function.

VISION:Report options are made available on three levels. They are provided
for all systems as follows:

Option Description

Default These are distributed with the VISION:Report system. Their
respective defaults and values are noted on the following
pages.

Installation One or more of the OPTION defaults can be changed
permanently at a VISION:Report installation. A QJOPTION
macro is supplied on the distribution tape to incorporate and
catalog the options new defaults permanently. The systems
programmer or person in charge of software systems at each
installation has the necessary information and instructions
available to perform this function.

User One or more of the options may be changed or overridden at
VISION:Report execution time. The format of the OPTION
command is the word OPTION starting in any column (if
starting in other than column 1, all preceding columns must be
spaces), followed by at least one space, followed by operands
that may extend through column 72. Columns 73-80 of the
OPTION command are ignored by VISION:Report.

The operands must be a continuous character string separated
by commas with no embedded spaces; all columns past the
first space are considered comments.

The operand string must end with a complete operand without
a trailing comma. If there are more operands than fit on a
statement, simply code additional OPTION statements. There
is no continuation indicator.

Statement Format 3–97

OPTION

Option Description

Obsolete The following OPTION statements are no longer required, but
remain in VISION:Report for compatibility:

■ #EQU

■ CALLCT

■ CALLSZ

■ CDIOUR

■ GENSIZE

■ LITSIZE

■ SORTMAX

■ SORTMIN

■ STMTS

They may still be coded within the VISION:Report program,
but the coding has no effect and is ignored.

Example

 OPTION LIST=NO
OPTION SEQCHK=YES,CLRVIP=NO
OPTION MOVCVTX=YES,SRTADJ=YES

If the same option is expressed more than once, the last specification is used.
PRTDD, LIST, PRTSIZE, and STMTLCT can be used only in the first OPTION
statement. Use the following table to keep a record of the default options at
your installation.

Summary of Job Options

Keyword

VSE
Default

MVS
Default

Installation
Default

#EQU N/A N/A

BWZ No No

CALLCT N/A N/A

CALLSZ N/A N/A

CDIOUR N/A N/A

3–98 VISION:Report Reference Guide

OPTION

Keyword

VSE
Default

MVS
Default

Installation
Default

CFLEOPT No No

CLRVIP No No

CLRVOP No No

CRSIGN No No

DBIRTN No N/A

DELUPGM N/A Yes

DETDD N/A SYSDET

DUMPALL No N/A

EDIT No No

EDITALL No No

EDTNAME QUKBEMSK QUIKEMSK

EUROPTN No No

EXPMLOG No No

EXPMLST Yes Yes

GENSIZE N/A N/A

HDRDOTS Yes Yes

HOSTRTN No N/A

IFNUM No No

INADD N/A SYSINA

INBDD N/A SYSINB

INCDD N/A SYSINC

INDD N/A SYSIN

INDDD N/A SYSIND

INEDD N/A SYSINE

INFDD N/A SYSUT1

INGDD thru INZDD N/A SYSING thru SYSINZ

LIST Yes Yes

LISTABL No No

LISTOPT No No

Statement Format 3–99

OPTION

Keyword

VSE
Default

MVS
Default

Installation
Default

LITSIZE N/A N/A

MBUFFER Yes N/A

MOVCVTX No No

MSGROLL N/A Yes

OFADD N/A SYSUT2

OFBDD N/A SYSUT3

OFCDD N/A SYSUT4

OFDDD N/A SYSUT5

OFEDD thru OFZDD N/A SYSOFE thru SYSOFZ

OVLY N/A No

PARMEXE No N/A

PARMFLD N/A Yes

PFLEOPT No No

PRNTLCT 54 54

PRODCOD - -

PRTDD N/A SYSPRINT

PRTSIZE 133 133

PUNDD N/A SYSPUNCH

PUNSIZE N/A 81

QJMDUMP Yes Yes

RESVMEM 00 N/A

RPTDD N/A SYSPRINT

RPTSPCE 0 0

RPTSYS 000 N/A

SAVAREA 256 256

SEQCHK Yes Yes

SORTABL Yes Yes

SORTMAX N/A N/A

SORTMIN N/A N/A

3–100 VISION:Report Reference Guide

OPTION

Keyword

VSE
Default

MVS
Default

Installation
Default

SORTPRT No N/A

SORTRTE BOTH N/A

SORTSIZ 40 N/A

SORTSYS 001 N/A

SORTWRK 1 N/A

SPIE N/A Yes

SQLA1 0 0

SQLA2 0 0

SQLA3 0 0

SQLA4 0 0

SQLA5 0 0

SQLPLNM ******** ********

SQLSYSN **** ****

SQLVER 00.00 00.00

SRTADJ No No

SRTERCD N/A 150000

SRTMSG N/A ??

SRTPGM N/A SORT

SRTSIZE N/A 0

SRTWKN N/A No

STMTEND 80 80

STMTIN SYSIPT N/A

STMTLCT 50 50

STMTS N/A N/A

STXITPC Yes N/A

SUBSPIE N/A Yes

TRACECT 10 10

TRLNAME QUKBTRN QUIKTRNT

UABNDMP No No

Statement Format 3–101

OPTION

Keyword

VSE
Default

MVS
Default

Installation
Default

UEXIT1 No No

U331DMP Yes Yes

U333ABE No No

U334DMP N/A No

U335DMP Yes Yes

U336DMP Yes Yes

U339DMP No No

VLABEND N/A Yes

WSTSIZE 1000 1000

ZEROPRT No No

VISION:Report OPTION Keywords

The following list contains all of the valid VISION:Report OPTION keywords.
All are applied to all systems, except where VSE ONLY or MVS ONLY is noted.
The underlined operand is the VISION:Report default condition or value that is
in effect at execution time.

Note: The PRTSIZE, PRTDD, LIST, or STMTLCT option must be on the first
OPTION statement.

To obtain a printout of the current installation default options, code
OPTION LISTOPT=YES. All options except PRODCOD are shown.

BWZ=NO
 YES

Blank-When-Zero. When a source field is zeros on a MOVE to PRT with at least
1 decimal place, should VISION:Report leave the area blank (instead of .00)?
This is a run-time option and applies to all MOVE and ACCUM statements with
decimals involved.

CFLEOPT=NO
 YES

File counts on system console at end of job?

CLRVIP=NO
 YES

3–102 VISION:Report Reference Guide

OPTION

Clear the entire input area to spaces before reading a variable length record?

CLRVOP=NO
 YES

Clear the entire output area to spaces after writing a variable length record?

CRSIGN=NO
 YES

Should VISION:Report indicate negative fields moved to PRT with CR instead
of the usual negative sign (-)? This is a run-time option and applies to all MOVE
and ACCUM statements with editing involved.

DBIRTN=NO
 YES (VSE ONLY)

Should VISION:Report return to the database interface on abnormal conditions
or termination? This is only effective when used in conjunction with one of the
VISION:Report interfaces (QUIKDLI, QUIKIDMS, as examples).

DELUPGM=YES
 NO

Delete user programs referenced in CALL/LOAD statements at EOJ? Modules
performing I/O to data set names without CLOSE should specify NO.

DETDD=SYSDET
 ddname (MVS ONLY)

The ddname for the VISION:Report DET file.

DUMPALL=NO
 YES (VSE ONLY)

Should VISION:Report PDUMP the critical portions of the supervisor, as well as
the partition GETVIS area in VSE systems when a memory dump is to be taken?

Edit=No
 Yes

Should VISION:Report commands be compiled, but not executed? If EDIT=YES,
the commands are syntax checked and, if a report is specified, a small proof
copy is produced.

EDITALL=NO
 YES

If NO, edit masks or codes are in effect only if target area is PRT. If YES, edit
codes are in effect for all areas.

EDTNAME=QUIKEMSK (MVS)
 username

EDTNAME=QUKBEMSK (VSE)
 username

Load module/phase name of the expanded MOVE edit mask pattern table.
QUIKEMSK (MVS) or QUKBEMSK (VSE) is the name of the module supplied
with the system and contains mask patterns as explained in the expanded
MOVE statement.

Statement Format 3–103

OPTION

EUROPTN=NO
 YES

Are European variation of commas/decimals to be used exclusively? Applicable
to MOVE TO PRT and REPORT fields with print specifications.

EXPMLOG=NO
 YES

Display expiration message on the system console? When VISION:Report
product code is within 45 days of expiring, a warning message specifying the
number of days left is displayed each time VISION:Report is run.

Do not select EXPMLOG=NO and EXPMLST=NO as the standard options, as
you will not know when VISION:Report will expire.

EXPMLST=YES
 NO

Print expiration message (SYSPRINT if MVS, SYSLST if VSE)? When
VISION:Report product code is within 45 days of expiring, a warning message
specifying the number of days left is displayed each time VISION:Report is run.
The EXPMLST option allows you to specify if you want the expiration message
to appear on the printer.

Do not select EXPMLOG=NO and EXPMLST=NO as the standard options, as
you will not know when VISION:Report will expire.

HDRDOTS=YES
 NO

Should generated field headings use periods (.) as the fill character for
header/data field alignment? Blanks are used when NO is in effect.

HOSTRTN=NO
 YES (VSE ONLY)

Should numeric fields with unlike data types be compared numerically?

IFNUM=NO
 YES

Should VISION:Report return control to the host caller (by Register 14) at end of
job or abnormal termination instead of issuing an EOJ and returning control to
the system?

INADD=SYSINA
 ddname (MVS ONLY)

The ddname for the VISION:Report INA file.

INBDD=SYSINB
 ddname (MVS ONLY)

The ddname for the VISION:Report INB file.

INCDD=SYSINC
 ddname (MVS ONLY)

3–104 VISION:Report Reference Guide

OPTION

The ddname for the VISION:Report INC file.

INDD=SYSIN
 ddname (MVS ONLY)

The ddname for the VISION:Report command/table file.
You cannot change this option at run-time; this is a permanent installation
option only.

INDDD=SYSIND
 ddname (MVS ONLY)

The ddname for the VISION:Report IND file.

INEDD=SYSINE
 ddname (MVS ONLY)

The ddname for the VISION:Report INE file.

INFDD=SYSUT1
 ddname (MVS ONLY)

The ddname for the VISION:Report INF file.

INGDD=SYSING
 ddname (MVS ONLY)

The ddname for the VISION:Report ING file.

INHDD=SYSINH
 ddname (MVS ONLY)

The ddname for the VISION:Report INH file.

INIDD=SYSINI
 ddname (MVS ONLY)

The ddname for the VISION:Report INI file.

INJDD=SYSINJ
 ddname (MVS ONLY)

The ddname for the VISION:Report INJ file.

INKDD=SYSINK
 ddname (MVS ONLY)

The ddname for the VISION:Report INK file.

INLDD=SYSINL
 ddname (MVS ONLY)

The ddname for the VISION:Report INL file.

INMDD=SYSINM
 ddname (MVS ONLY)

The ddname for the VISION:Report INM file.

INNDD=SYSINN
 ddname (MVS ONLY)

Statement Format 3–105

OPTION

The ddname for the VISION:Report INN file.

INODD=SYSINO
 ddname (MVS ONLY)

The ddname for the VISION:Report INO file.

INPDD=SYSINP
 ddname (MVS ONLY)

The ddname for the VISION:Report INP file.

INQDD=SYSINQ
 ddname (MVS ONLY)

The ddname for the VISION:Report INQ file.

INRDD=SYSINR
 ddname (MVS ONLY)

The ddname for the VISION:Report INR file.

INSDD=SYSINS
 ddname (MVS ONLY)

The ddname for the VISION:Report INS file.

INTDD=SYSINT
 ddname (MVS ONLY)

The ddname for the VISION:Report INT file.

INUDD=SYSINU
 ddname (MVS ONLY)

The ddname for the VISION:Report INU file.

INVDD=SYSINV
 ddname (MVS ONLY)

The ddname for the VISION:Report INV file.

INWDD=SYSINW
 ddname (MVS ONLY)

The ddname for the VISION:Report INW file.

INXDD=SYSINX
 ddname (MVS ONLY)

The ddname for the VISION:Report INX file.

INYDD=SYSINY
 ddname (MVS ONLY)

The ddname for the VISION:Report INY file.

INZDD=SYSINZ
 ddname (MVS ONLY)

The ddname for the VISION:Report INZ file.

LIST=YES
 NO

3–106 VISION:Report Reference Guide

OPTION

List VISION:Report commands, diagnostics, and statistics on SYSLST (VSE) or
SYSPRINT (MVS)? It must be stated on the first OPTION statement.

LISTABL=NO
 YES

Should VISION:Report print the table entries as they are loaded into the table?

LISTOPT=NO
 YES

List all VISION:Report options in effect? PRODCD option does not print out.

MBUFFER=YES
 NO (VSE ONLY)

Should VISION:Report multi-buffer all disk and tape files that space allows?
(Replaces the previous OPTION NOBUFFER.)

MOVCVTX=NO
 YES

This option applies to VISION:Report statements of the format: MOVE X'....' TO
field-name. NO does not convert data to target field data type. If YES, this
allows automatic data type conversion based upon the target field data type,
similar to the MOVEs of literal P'....' and literal C'....'.

MSGROLL=YES
 NO (MVS ONLY)

Should messages displayed on the system console automatically scroll off the
screen without any action required by the operator? This option remains in
effect for the duration of the job step.

OFADD=SYSUT2
 ddname (MVS ONLY)

The ddname for the VISION:Report OFA file.

OFBDD=SYSUT3
 ddname (MVS ONLY)

The ddname for the VISION:Report OFB file.

OFCDD=SYSUT4
 ddname (MVS ONLY)

The ddname for the VISION:Report OFC file.

OFDDD=SYSUT5
 ddname (MVS ONLY)

The ddname for the VISION:Report OFD file.

OFEDD=SYSOFE
 ddname (MVS ONLY)

The ddname for the VISION:Report OFE file.

OFFDD=SYSOFF
 ddname (MVS ONLY)

Statement Format 3–107

OPTION

The ddname for the VISION:Report OFF file.

OFGDD=SYSOFG
 ddname (MVS ONLY)

The ddname for the VISION:Report OFG file.

OFHDD=SYSOFH
 ddname (MVS ONLY)

The ddname for the VISION:Report OFH file.

OFIDD=SYSOFI
 ddname (MVS ONLY)

The ddname for the VISION:Report OFI file.

OFJDD=SYSOFJ
 ddname (MVS ONLY)

The ddname for the VISION:Report OFJ file.

OFKDD=SYSOFK
 ddname (MVS ONLY)

The ddname for the VISION:Report OFK file.

OFLDD=SYSOFL
 ddname (MVS ONLY)

The ddname for the VISION:Report OFL file.

OFMDD=SYSOFM
 ddname (MVS ONLY)

The ddname for the VISION:Report OFM file.

OFNDD=SYSOFN
 ddname (MVS ONLY)

The ddname for the VISION:Report OFN file.

OFODD=SYSOFO
 ddname (MVS ONLY)

The ddname for the VISION:Report OFO file.

OFPDD=SYSOFP
 ddname (MVS ONLY)

The ddname for the VISION:Report OFP file.

OFQDD=SYSOFQ
 ddname (MVS ONLY)

The ddname for the VISION:Report OFQ file.

OFRDD=SYSOFR
 ddname (MVS ONLY)

The ddname for the VISION:Report OFR file.

OFSDD=SYSOFS
 ddname (MVS ONLY)

3–108 VISION:Report Reference Guide

OPTION

The ddname for the VISION:Report OFS file.

OFTDD=SYSOFT
 ddname (MVS ONLY)

The ddname for the VISION:Report OFT file.

OFUDD=SYSOFU
 ddname (MVS ONLY)

The ddname for the VISION:Report OFU file.

OFVDD=SYSOFV
 ddname (MVS ONLY)

The ddname for the VISION:Report OFV file.

OFWDD=SYSOFW
 ddname (MVS ONLY)

The ddname for the VISION:Report OFW file.

OFXDD=SYSOFX
 ddname (MVS ONLY)

The ddname for the VISION:Report OFX file.

OFYDD=SYSOFY
 ddname (MVS ONLY)

The ddname for the VISION:Report OFY file.

OFZDD=SYSOFZ
 ddname (MVS ONLY)

The ddname for the VISION:Report OFZ file.

OVLY=NO
 YES

Should VISION:Report run in a form of overlay mode at compile time? This
option uses less memory at compile time, but causes VISION:Report to run
slower during the compile phase. The execute phase time is not affected.

PARMEXE=NO (VSE ONLY)
 YES

Should VISION:Report use the PARM=parameter of the // EXEC statement? If
PARMEXE=YES, the contents of VAL76-179 is the same as that for MVS.
Regardless of PARMEXE option, the VSE COMREG user area will be in VAL
261-271. If PARMEXE=NO, the VSE COMREG user area will also be in VAL 78-
88. (See the section Val Area in Chapter 2 for VAL76-179.)

PARMFLD=YES
 NO (MVS ONLY)

Should VISION:Report expect a parameter field to be passed to it when
dynamically invoked? If PARMFLD=YES is in effect when VISION:Report is
dynamically invoked, the invoking program must pass a single parameter field,
using standard linkage conventions. The field must consist of a halfword binary
length followed by the parameter data itself.

Statement Format 3–109

OPTION

For example, if you want to pass five bytes of data, you would point to a seven-
byte field whose first two bytes are X'0005'. The parameter field is available to
VISION:Report statements in VAL76-177.

PFLEOPT=NO
 YES

Print file counts on printer when OPTION LIST=NO is in effect?

PRNTLCT=54
 nnn

Number of lines per page on the VISION:Report report file. May be in the range
of 0 through 999. Zero implies no automatic page changes. If a LINECOUNT
command is present, it overrides this option.

PRODCOD=xxxxxxxxxxxxxxxxxxxx

The product code assigned to your installation is issued by Computer
Associates and must be used. Its length is variable and depends upon the
number of CPUs and optional features you have. Normally this value is
implemented when the product is installed and you should ignore this. If it is
not implemented, your systems programmer (or person who installed the
product) must supply you with this. If that is necessary, this option will be
required for every VISION:Report execution. It is not displayed if OPTION
LISTOPT=YES is specified.

PRTDD=SYSPRINT
 ddname (MVS ONLY)

The ddname for the VISION:Report print file. If the ddname is other than the
default of SYSPRINT, it must be on the first OPTION statement.

PRTSIZE=133
 nnnn

The length or record size of the output on the VISION:Report PRT file. The first
byte of the record is used by VISION:Report for standard ASA carriage control
characters. MVS VISION:Report users can specify the block size on the
SYSPRINT DD statement; ensure that it is a multiple of the LRECL (PRTSIZE)
value.

PRTSIZE values can range from 121 to 9999. If PRTSIZE option is used, it must
be on the first OPTION statement. The restriction is limited by hardware and
operating system constraints.

PUNDD=SYSPUNCH
 ddname (MVS ONLY)

The ddname for the VISION:Report punch file.

PUNSIZE=81
 80 (MVS ONLY)

The LRECL value (size) of the records that are output on the PUN file using the
VISION:Report PUNCH statement. If PUNSIZE=81, a blank statement is always
punched as the last statement to clear the punch. If PUNSIZE=80, a blank
statement is not created.

3–110 VISION:Report Reference Guide

OPTION

QJMDUMP=YES
 NO

Should VISION:Report furnish a hexadecimal print of all active areas when
canceling due to a user ABEND statement? This produces the same information
as if a program check occurred.

RESVMEM=0
 nn (VSE ONLY)

VISION:Report reserves nnK memory. The address of this reserved area is
contained in VAL257-260-B.

RPTDD=SYSPRINT
 ddname (MVS ONLY)

Alternate ddname for the VISION:Report report file. Default of SYSPRINT
indicates that no alternate report printer is being used.

RPTSPCE=0
 nnn

Used in conjunction with the REPORT statement, RPTSPCE allows you to
specify a default spacing of n to nnn between data columns. If this parameter is
equal to zero, spacing is automatically determined by the REPORT logic, based
upon the number and length of fields specified on the REPORT statement; if
non-zero, this parameter sets the default spacing in between fields if the
SPACEnn parameter is not specified.

RPTSYS=000
 nnn (VSE ONLY)

Alternate SYSNR for VISION:Report output. Must be between 001 and 240. The
default indicates no alternate report printer requested.

SAVAREA=256
 nnnnnnnnnn

Size of the VISION:Report SAV area. May be in the range of 0 up to 2 gigabytes.
This area can be used as working storage (such as in addition to WST).

SEQCHK=YES
 NO

Should the VISION:Report command statements be sequence checked? (YES
requires a sequence number on each statement.)

SORTABL=YES
 NO

Should VISION:Report do an internal sort on the table entries loaded to ensure
ascending sequence by argument? If NO is used, then a serial search is always
done whenever an IF....ONTABLE statement is encountered. Also, if the
IF...ONTABLE fails, TBH always points to the first high-value (HEX FF) entry in
the table which follows the correct entries.

Statement Format 3–111

OPTION

SORTPRT=NO
 YES (VSE ONLY)

Should informational messages resulting from the SORT utility be issued?
SORTPRT=YES replaces SORTPRT=ALL, and SORTPRT=NO replaces
SORTPRT=CRITICAL. The ALL and CRITICAL specifications are still accepted
for compatibility.

SORTRTE=BOTH
 LST
 LOG (VSE ONLY)

Allows SORT messages to be routed to SYSLST or SYSLOG exclusively or
BOTH.

SORTSIZ=40
 nnn (VSE ONLY)

Amount of memory for the utility SORT to use expressed in K (1024 bytes). A
numeric value in the range of 0 to 9999 is valid.

SORTSYS=001
 nnn (VSE ONLY)

The first logical SYSNR for SORT work areas. If SORTWRK=2 and
SORTSYS=005, QUIKSORT generates a control field of SORTWK=(005,006) on
the SORT utility option statement.

SORTWRK=1
 n (VSE ONLY)

Number of SORT work areas to be used. Maximum is nine.

SPIE=YES
 NO (MVS ONLY)

Should program checks be trapped and a formatted print of active
VISION:Report data areas be produced?

SQLA1=0
 9999

You must be licensed to use VISION:Report Interface to DB2.

This is an area of storage reserved for temporarily saving the original source
statements for EXEC SQL...END-SQL statements in your VISION:Report
program. If this amount of storage is exceeded during compilation, a warning
message appears and VISION:Report attempts to obtain more storage and
continue. If this condition consistently occurs, this option should be increased.

SQLA2=0
 9999

3–112 VISION:Report Reference Guide

OPTION

This is an area of storage reserved for temporarily storing the compressed EXEC
SQL...END-SQL statements. Each compressed SQL takes up the length of any
extended substitution variables. As an example, if the statement "... :=WST1-
4095 .. " appears in an SQL statement, 4095 bytes are reserved. This area is
reserved only during the compilation stage and is freed up during execution. If
this amount of storage is exceeded during compilation, a warning message
appears and VISION:Report attempts to obtain more storage and continue. If
this condition consistently occurs, this option should be increased.

SQLA3=0
 9999

This is an area of storage reserved for temporarily storing the pointers for host
variables (":") in EXEC SQL...END-SQL statements. Each host variable takes up
12 bytes. This area is reserved only during the compilation stage and is freed up
during execution. If this amount of storage is exceeded during compilation, a
warning message appears and VISION:Report attempts to obtain more storage
and continue. If this condition consistently occurs, this option should be
increased.

SQLA4=0
 9999

You must be licensed to use VISION:Report Interface to DB2.

This is an area of storage reserved for temporarily storing the pointers for
extended substitution (":=") variables in EXEC SQL...END-SQL statements. Each
extended substitution variable takes up 12 bytes. This area is reserved only
during the compilation stage and is freed up during execution. If this amount of
storage is exceeded during compilation, a warning message appears and
VISION:Report attempts to obtain more storage and continue. If this condition
consistently occurs, this option should be increased.

SQLA5=0
 9999

This is an area of storage reserved for holding the generated code for
EXEC SQL...END-SQL statements, both during compilation and execution
phases of VISION:Report.

Σ ((size of compressed SQL statement + size of extended host
 variables + (# host variables + # extended host variables)
 * 12) + # SQL statements * 32)

If this amount of storage is exceeded during compilation, a warning message
appears and VISION:Report attempts to obtain more storage and continue. If
this condition consistently occurs, this option should be increased.

SQLPLNM=********

You must be licensed to use VISION:Report Interface to DB2.

DB2 or SQL/DS plan name, with a maximum of eight characters.

SQLSYSN=****

You must be licensed to use VISION:Report Interface to DB2.

Statement Format 3–113

OPTION

DB2 or SQL/DS system name, with a maximum of four characters.

SQLVER=nn.nn

You must be licensed to use VISION:Report Interface to DB2.

DB2 or SQL/DS version and release level, in the format of vv.rr. This parameter
controls the generation of the dynamic SQL statements that are created from the
static SQL statements embedded in your VISION:Report program. Ten
character positions are available in this field. Use significant digits; no padding
is necessary (for example, =2.3 or =4.1).

SRTADJ=NO
 YES

This option allows you to define the true offset relative to the start of a sort area.
See SORT AREA, the SRTADJ option for more details.

SRTERCD=150000 (MVS ONLY)
 nnnnnnnn

The estimated number of logical records that are sorted. The estimate provides
better sorting efficiency especially with a large number of records involved. 1 to
8 numeric digits may be specified.

SRTMSG=??
 xx (MVS ONLY)

The SORT messages option expressed in two characters. Any two characters
may be used that are valid with the particular SORT package that is used. The
installation default prevails when omitted.

The following codes apply to most SORT systems available:

 NO No messages are generated.
 CC Critical messages only, routed to console.
 CP Critical messages only, routed to printer.
 AC All messages, routed to console.
 AP All messages, routed to printer.

SRTPGM=SORT
 sortname (MVS ONLY)

The program name of the utility SORT, which is loaded in to do the actual
sorting.

SRTSIZE=0
 nnnn (MVS ONLY)

Amount of memory for the utility SORT to use expressed in K (1024 bytes). A
numeric value in the range of 0 to 9999 is valid.

SRTWKN=NO
 YES (MVS ONLY)

Dynamic SORT work file allocation.

STMTEND=80
 nn

3–114 VISION:Report Reference Guide

OPTION

Allows for sequence numbers, as example, on the right side of VISION:Report
statements. The nn integer is the statement column or relative position of the
right hand side of all statements in the same run that delimits the end of
VISION:Report statement content.

In addition, the next position immediately to the right (nn plus 1) designates
whether or not the current statement is to be continued to the next statement. A
statement with a non-blank character at nn plus 1 is assumed to be continued in
the next statement, except when preceded by a /* comment delimiter. For
simplicity, comments should end before the STMTEND column.

Continuation statements begin in column 1 and proceed long as far as required
to complete a full 80 positions of the previous statement. The nn integer must be
within the range of 40 through 80.

This option does not apply to any tables to be loaded. Also, any sequence
numbers on the right side of VISION:Report statements do not replace or
change the need for them on the left side.

As an example, code STMTEND=71 to allow sequence numbers in positions 73-
80.

STMTIN=SYSIPT
 SYSRDR (VSE ONLY)

The name of the system logical unit that contains your VISION:Report
statements and table entries, if present. SYSIPT and SYSRDR are the only valid
entries.

This option cannot be overridden at run-time. It can only change on a
permanent basis by recompiling the QJOPTION macro.

STMTLCT=50
 nnn

Number of lines per page on the VISION:Report print file when listing the
VISION:Report command statements and diagnostics. May be in the range of 0
through 999. Zero implies no automatic page changes. There is an overhead of
four lines for headings, as example, so the number specified plus four equals the
true total lines per page. This option is ignored when LIST=NO is in effect. This
option must be stated on the first OPTION statement.

STXITPC=YES
 NO (VSE ONLY)

Should program checks be trapped and a formatted print of the trace table and
active VISION:Report areas be produced?

SUBSPIE=YES
 NO (MVS ONLY)

Should program checks that occur in a called subroutine be trapped? Due to the
fact that when SUBSPIE=NO and SPIE=YES are in effect, a SPIE macro is issued
before and after each VISION:Report CALL command, it is recommended that
this combination of options be used only in a testing environment due to
probable performance degradation. This option is ignored if SPIE=NO is in
effect.

Statement Format 3–115

OPTION

TRACECT=10
 nn

Number of VISION:Report trace entries printed on one line when TRACE ALL
is in effect. Valid entries may range from 1 to 10.

TRLNAME=QUIKTRNT (MVS)
 QUKBTRN (VSE)
 username

Name of a user program that contains two translate tables for use in
VISION:Report PRINTHEX and PRINTCHAR statements.

 1st table character line
 2nd table zone and numerics

UABNDMP=NO
 YES

Should a memory dump be produced when canceling due to a VISION:Report
ABEND command?

UEXIT1=NO
 Subroutine name

Should a subroutine be used to retrieve VISION:Report code from a source
statement library?

U331DMP=YES
 NO

Should a memory dump be produced when canceling due to I/O errors
encountered?

U333ABE=NO
 YES

If YES, abend without a dump on compilation error, with code U3333. If NO,
VISION:Report will issue a return code of 12, without an ABEND.

If this parameter equals NO and the DD statement has
DISP=(,CATLG,DELETE), the file will not be deleted.

U334DMP=NO
 YES (MVS ONLY)

Should a memory dump be produced when an ABEND is due to no SYSPRINT
DD statement?

U335DMP=YES
 NO

Should a memory dump be produced when VISION:Report fails to resolve
run-time parameters involved in internal CALL processor?

U336DMP=YES
 NO

3–116 VISION:Report Reference Guide

OPTION

Should a memory dump be produced when canceling due to a program check
detected by the VSE STXIT PR or MVS SPIE routines? This replaces the use of
the VSE OPTION DUMP/NODUMP to determine whether a memory dump
should be issued. MVS users require a SYSUDUMP or SYSABEND statement to
receive a memory dump printout.

U338DMP=NO
 YES (MVS ONLY)

Should a memory dump be produced when an ABEND is due to a variable
length record longer than the data set LRECL?

U339DMP=NO
 YES

Should a memory dump be produced when canceling due to a SORT operation
failure?

VLABEND=YES
 NO (MVS ONLY)

Should VISION:Report ABEND U3338 if a variable length record is read or is to
be written, which is longer than the data set LRECL?

WSTSIZE=1000
 nnnnnnnnnn

Size of the VISION:Report WST area. May be in the range of 0 up to 2 gigabytes.

XAMODE=No
 Yes

Size of the VISION:Report WST area. May be in the range of 0 up to 2 gigabytes.

ZEROPRT=NO
 YES

This option is only valid for release 15.0, 15.1, and 16.0 of VISION:Report. It
allows a user to obtain user storage above the line starting with 16.1, this option
is obsolete.

VSAMER=NO
 YES

The VSAM Error Word, controls the location in the VSAM feedback area where
the VSAM error word, a 3-byte character string indicating the result of the last
VSAM operation, is displayed. If set to NO then it will be displayed at VAL
Area offset 253-255. If set to YES then it will be displayed at VAL Area offset
257-259. This option accommodates the 8-byte RBA returned by MVS Extended
Format VSAM files. (See the description of VAL Area in Chapter 2.)

Statement Format 3–117

OR (Logical OR)

OR (Logical OR)
OR flddef1 WITH {flddef2 | C'xxx' | P'nnn' | X'...' | ZERO | BLANK | SPACE |
HIVALUE | LOVALUE } { flddef3 | X'...' }

Note: This OR verb should not be confused with the OR option on the IF verb.

Term Description

OR Performs the logical OR of a data field. The contents of a bit
position in the source are set to one if the corresponding bit
positions in either or both operands contains ones; otherwise
the bit is set to zero. The resulting condition code is returned
in VAL223-B. If any bits in the source operand are one
following completion of the operation, then the condition
code is x'01'; otherwise, it is x'00'. In the case of a ZERO
figcon, if flddef1 is character, then a character zero x'F0' is
used, otherwise, a binary zero x'00' is used.

flddef1 Source data. This field may be changed as a result of the
operation.

WITH Required noise word.

flddef2
C'xxx'
P'nnn'
X'...'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

The second operand. This field is not changed.

flddef3
X'...'

Optional. A 2- or a 4-byte binary field indicating the number
of bytes to be ORed. If this operand is omitted, then the
length of the source field is used.

3–118 VISION:Report Reference Guide

PAGETOTALS

Example
EQU FILLER WST0
EQU FLDA (6) C'ABCDEF'
EQU FLDB (6) X'303030303030'
 OR FLDA WITH FLDB
 PRINTHEX FLDA
 PRINTHEX VAL223

 WST1-6 123456
 FFFFFF
 123456
 01..05.

 VAL223-223
 0
 1
 01

PAGETOTALS
PAGETOTALS [CUMULATIVE]

Note: Problems occur using PAGETOTALS if a PRINT statement is coded
within a CHECKBREAKS ON BREAKS PERFORM routine.

Term Description

PAGETOTALS If this statement is found any place in the statement stream,
the coding is generated to force a minor total print after the
last detail line that is printed at the bottom of each page. This
feature functions the same as a BREAK 1 level occurring once
per page.

PAGETOTALS is not dependent on CHECKBREAKS or
BREAK statements, although these may be included for
normal totaling. If you code BREAK statements, you must
consider the page totals as the minor break and may also need
to adjust the SPACE BEFORE and SPACE AFTER
specifications. If no BREAK statement is included, one blank
line appears between the last detail line and the page totals.
Also, if no BREAK statements are coded, no final
totals appear.

CUMULATIVE Causes minor totals to be printed but the minor counters are
not added to the next total level counters and zeroed. The net
effect is that page 2 totals are the sum of page 1 totals plus the
detail lines on page 2, as example.

Statement Format 3–119

PAGEWIDTH

ACCUM statements must be executed before a PRINT statement is encountered
in your program. If not, the totals printed at the bottom of the page are not
correct.

PAGEWIDTH
PAGEWIDTH nnn

Term Description

PAGEWIDTH Controls the maximum width of a report. The normal default
is the value of PRTSIZE-1 (see OPTION). The PAGEWIDTH
statement overrides the PRTSIZE default. This statement is a
declarative.

nnn 1- to 3-digit value representing the maximum width of the
report to be printed.

Example
PAGEWIDTH 72
PAGEWIDTH 60

PERFORM
PERFORM seq-no1 THRU seq-no2

Term Description

PERFORM Causes the statements delimited by seq-no1 and seq-no2 to be
executed.

seq-no1 Sequence number of the first statement of the series of statements
to be executed.

THRU Required noise word.

seq-no2 Sequence number of an EXIT statement that represents the end of
the subroutine. This operand is required and the statement must
be an EXIT command on the same line as the sequence number.

The PERFORM statement:

■ Transfers to the specified sequence number of the first statement of the
series.

3–120 VISION:Report Reference Guide

PRINT

■ Customizes the EXIT statement specified as the end of the subroutine to
transfer to the statement following the PERFORM statement.

Coding referred to by PERFORM statements may also be executed by falling
into the coding from the previous statement. The EXIT statement at the end of
the routine would then deactivate itself as part of transferring back to the main
part of the program and has no effect when the subroutine is fallen into from a
previous statement.

PRINT
PRINT [DOUBLESPACE|TRIPLESPACE]

Term Description

PRINT Prints the current contents of the print line (PRT).

DOUBLESPACE Causes a blank line before printing. This produces a
double-spaced listing.

TRIPLESPACE Causes two blank lines before printing. This produces a
triple-spaced listing.

VISION:Report is set to print the number of lines specified in PRNTLCT (which
can be overridden with a LINECOUNT statement) and automatically ejects to
the next page after the specified number of lines and prints user defined
headers, if any.

After printing, PRT is blanked.

The VISION:Report OPTION PRTSIZE is available to specify the size of the
print line (PRT). The default is 133 bytes. See OPTION for more information.

Statement Format 3–121

PRINT REPORT

PRINT REPORT
PRINT REPORT [DOUBLESPACE|TRIPLESPACE] [SUMMARY|[OMIT] flddef ...]

Term Description

PRINT REPORT This statement is used in conjunction with the REPORT
statement. If you have not coded a REPORT statement in
your program, do not use PRINT REPORT in that run. The
REPORT statement is a declarative that lists all the fields
that appear in your report. See REPORT for details of
editing specifications or override headers.

The fields stated in the REPORT statement are in the report
in the same order you list them. For example, the first field
is on the far left of your report; the second field is the next
column. Their exact print positions are determined
internally by VISION:Report. (See also RPTSPCE under the
OPTION statement, and the REPORT declarative.)

DOUBLESPACE Causes one blank line before printing your report line.

TRIPLESPACE Causes two blank lines before printing your report line.

SUMMARY Produces a summary report.

OMIT flddef Suppresses printing of the specified fields.

The coding of the keyword OMIT followed by one or more field definitions
suppresses the printing of those fields. The following statement prints all fields
that were listed in the REPORT statement, except FLD-C and FLD-D.

PRINT REPORT OMIT FLD-C FLD-D

Using the SUMMARY operand produces a report showing only total lines for
each break group. For instance, if you code a BREAK statement for DEPT, your
report shows only total lines for each department, never showing the detail
from each record.

The PRINT REPORT SUMMARY statement should be coded in the same place
you would normally code PRINT REPORT to get a detail printed report.

PRINT REPORT SUMMARY causes the same internal MOVE TO PRT as the
standard PRINT REPORT, but no printing is done. The actual print occurs only
at break processing. The net result is that the print line is built each time the
PRINT REPORT SUMMARY statement is handled, but at break-time the
accumulated fields are moved and the entire line is printed.

3–122 VISION:Report Reference Guide

PRINT REPORT

Example
 TITLE 'SUMMARY EXAMPLE REPORT'
 REPORT FLD-A FLD-B FLD-C FLD-D FLD-E
 BREAK 1 FLD-B SB 0 SA 1
 BREAK 2 FLD-A SB 0 SA E
100 GET INF
 CHECKBREAKS
 ACCUM FLD-C
 ACCUM FLD-D
 ACCUM FLD-E
 PRINT REPORT SUMMARY
 GOTO 100
 END

The PRINT REPORT statement internally causes a MOVE TO PRT of each field
you listed in the REPORT statement. These internal MOVES are followed by a
print. By using only two statements, REPORT and PRINT REPORT, you get a
completely aligned report with column headings, date, and page numbers.

The following example reads an input record and prints a line on the report for
each record showing only the five fields stated in the REPORT statement.

Example
REPORT FLD-A FLD-B FLD-C FLD-D FLD-E /* Define report format

010 GET INF
 PRINT REPORT /* Move each field to prt and print
 GO TO 010
 END

The PRINT REPORT statement may appear in one run any number of times.
Depending on your requirements, you may need to override the fields to be
printed by either:

■ Coding only the fields you want printed this occurrence.

PRINT REPORT FLD-A FLD-C /* Print FLD-A FLD-C only

■ Using the OMIT option to omit certain field(s) this occurrence.

PRINT REPORT OMIT FLD-B /* Print all but FLD-B

Single spacing is the default used with PRINT REPORT, but you can override
that by specifying DOUBLESPACE or TRIPLESPACE. For different spacing
requirements, review the SET PCC statement in this guide. When SET PCC is in
effect, it becomes your responsibility to set printer spacing.

Statement Format 3–123

PRINTCHAR

PRINTCHAR
PRINTCHAR flddef1 [flddef2]

Term Description

PRINTCHAR Prints the contents of the specified field in character format.
This statement works like the PRINTHEX statement, except the
ZONE and NUM lines are not printed.

flddef1 The VISION:Report area/definition at which printing of data
begins.

flddef2 A field definition that contains a value that indicates the length
of the data to be printed. This operand must be a 2- or 4-byte
binary field.

The specified field is printed in 100 character increments. Any VISION:Report
area may be character printed except PRT. The PRT data area is used by the
PRINTCHAR statement.

The data contained in the area specified is translated using a standard EBCDIC
conversion table (as example, A-Z uppercase, 0-9, and special characters) that
comes with the system. If you have a private translate table, such as for
upper/lowercase printing, you can invoke it by coding an OPTION statement
with keyword TRLNAME=xxxxxxxx, where xxxxxxxx is the load module name
(MVS) or phase name (VSE) of the private translate table.

Examples

Fixed Form:

010 PRINTCHAR INF1-80 /* Print input record
020 PRINTCHAR WST43-100 /* Print working storage

Variable Form:

010 PRINTCHAR INF1 INF1-2-B /* Length is in INF pos 1-2
100 PRINTCHAR DET1 DET1-4-B /* Length is in DET pos 1-4
410 PRINTCHAR OFA1 WST1-2-B /* Length is in WST pos 1-2

Warning: If the specified length is in error and causes VISION:Report to go
beyond its area, region, partition, as examples, program checks could occur.

3–124 VISION:Report Reference Guide

PRINTHEX

PRINTHEX
PRINTHEX flddef1 [flddef2]

Term Description

PRINTHEX Prints the contents of the specified field in hexadecimal, character,
and numeric format.

flddef1 The VISION:Report area/definition at which hex printing of data
begins.

flddef2 A field definition that contains a value that indicates the length of
data to be hex printed. This operand must be either a 2- or 4-byte
binary field.

The described field is printed in 100 character increments. Any VISION:Report
area may be hex printed, except PRT. The PRT data area is used by the
PRINTHEX statement.

The data contained in the area specified is translated using a standard EBCDIC
conversion table (for example, A-Z uppercase, 0-9, and special characters) that
comes with the system. If you have a private translate table, such as for
upper/lowercase printing, you can invoke it by coding an OPTION statement
with keyword TRLNAME=xxxxxxxx, where xxxxxxxx is the load module name
(MVS) or phase name (VSE) of the private translate table.

Example

 Fixed Form:

010 PRINTHEX INF1-80 /* Print input record
020 PRINTHEX WST43-100 /* Print working storage

Variable Form:

010 PRINTHEX INF1 INF1-2-B /* Length is in INF pos 1-2
100 PRINTHEX DET1 DET1-4-B /* Length is in DET pos 1-4
410 PRINTHEX OFA1 WST1-2-B /* Length is in WST pos 1-2

Warning: If the specified length is in error and causes VISION:Report to go
beyond its area, region, partition, as examples, program checks could occur.

Statement Format 3–125

PUNCH

PUNCH
PUNCH flddef

Term Description

PUNCH Writes the contents of the data area PUN to the card punch using
symbolic unit SYSPCH in VSE and ddname SYSPUNCH in MVS.
The PUN data area is then blanked by VISION:Report.

flddef The area/definition at which punching of data starts.

Example

If the field INF1-450 is coded, then 6 records are written.

Record 1 INF1-80
Record 2 INF81-160
Record 3 INF161-240
Record 4 INF241-320
Record 5 INF321-400
Record 6 INF401-450 followed by 30 blanks

In the previous example, after the PUN data is used, its contents are destroyed
using the PUNCH INF1-450 form of the PUNCH statement.

MVS users can change the record size for SYSPUNCH by using the PUNSIZE
option (see OPTION). This option allows the record to be 80 bytes long without
the punch control character, plus a blank statement is not punched when EOJ is
reached.

3–126 VISION:Report Reference Guide

READ

READ
READ {INA-INZ|DET} USING flddef {EQUAL|GENERIC} [ONERROR seq-no]

Term Description

READ Randomly retrieves a record from a KSDS, ESDS, or RRDS
VSAM file based upon the key field specified.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-
INZ, DET).

USING Required noise word.

flddef Field definition or an equated data name that contains the key
of the record desired. If the file is KSDS, the length of this area
cannot be less than the key length defined for it, with padded
fill characters to the right if necessary.

If the file is ESDS or RRDS, the length of this area must be 4
bytes binary. The key for an ESDS VSAM file is its RBA
(relative byte address), whereas an RRDS key is the relative
record number of the desired record.

EQUAL
GENERIC

The type of match desired between the key and the file. The
EQUAL operand indicates that a record with an equal key is to
be returned, whereas the GENERIC operand indicates that a
record with an equal key or, if an equal key cannot be found, a
record with the next greater key is to be returned. If neither is
specified, EQUAL is the default. The GENERIC operand
cannot be specified for ESDS or RRDS VSAM files.

ONERROR
seq-no

Causes VISION:Report to automatically transfer to the
statement with the specified sequence number when a VSAM
error occurs. This allows you to examine the error codes
(RC/EC) and take appropriate action. If this operand is not
coded and a VSAM error occurs, execution continues with the
next statement, and it is your responsibility to check for
these errors.

The length of the record is returned in the 2-byte or 4-byte length field
preceding the I/O area and in VAL243-246-B. To access the length field, see the

techniques shown in the section VSAM Recommendations in Chapter 2.

The following error is returned when the ONERROR operand is not coded:

 Error Word RC/EC

Error VAL253-255 VAL247-248

RECORD NOT FOUND 'RNF' X'0810'

Statement Format 3–127

RELEASE

RELEASE
RELEASE flddef [TO SORT]

Term Description

RELEASE Specifies the location of a record for sorting. This statement is used
in conjunction with the SORT AREA statement. You cannot use
RELEASE with a SORT FILE specification.

flddef The starting location (first position) of the record. This operand
must be an equated data name or VISION:Report field definition.

TO SORT Required noise words. If this operand is included, it must be coded
as shown.

The reuse or execution of the RELEASE statement automatically invokes a new
SORT operation, providing an intervening RETURN statement has been
encountered.

Example

 You have a very large Accounts Receivable file with a record size of 352 bytes.
However, you only want to sort the zip code, customer name, and street fields
of records with an account code of MO. Use the SORT option to efficiently
manage both machine time and the SORT work area size. Using SORT, select
only those records you want, build an area for the selected information, and
pass these shortened records to SORT.

EQU MY-AREA WST1-80 /* Entire sort area
 EQU ZIP WST1-5 /* Zip Code
 EQU CUST-NAME WST6-30 /* Name
 EQU STREET WST31-55 /* Street
 REPORT ZIP CUST-NAME STREET
 SORT AREA (F) RL80 ON ZIP CUST-NAME STREET
 MOVE SPACES TO MY-AREA
1 GET INF ATEND 2 /* Original record size 352 bytes
 IF INF182-183 IS NOT EQ C'MO' /* Select only "MO" code
 GOTO 1.
 MOVE INF155-159 TO ZIP /* Build sort work area of 80 bytes
 MOVE INF85-109 TO CUST-NAME
 MOVE INF110-134 TO STREET
 RELEASE WST1 TO SORT /* Turn record to be sorted over to sort
 GO TO 1 /* Get another record from input file
2 RETURN SORTED INTO WST1 ATEND EOJ /* Start returning records
* INSTEAD OF THE "ATEND 3" CLAUSE ABOVE,
* COULD HAVE CHECKED FOR VAL200 = 'E' INSTEAD
 PRINT REPORT
 GO TO 2
9999 END

For an additional example, see RETURN.

3–128 VISION:Report Reference Guide

REPORT

REPORT
REPORT flddef [SPACEnn] [nC|nE|nN|n mask-code] [(override-headers)] [flddef ...]

Term Description

REPORT Specifies the fields to appear in the report generated by
VISION:Report’s automatic report writer. This statement is a
declarative. You can specify spacing, override headers, and
edit masks. These optional operands may be interspersed
within the declarative in any order, so long as override headers
and edit codes follow the REPORT data name field.

flddef Up to 32,000 VISION:Report field definitions or equated names
may be specified to appear in the report line. When the report
line is longer than the option PRTSIZE, a diagnostic occurs.

If the accumulators CTA through CTP are used with the
ACCUM statement, the REPORT declarative must also specify
the field definition or equated name with the proper number of
bytes addressed by the rightmost positions. (See ACCUM.)

SPACEnn Allows control of spacing between data columns, where nn is a
1- or 2-digit number stating the number of spaces between the
report columns. SPACEnn should be stated between two field
definitions or preceding the first field definition in the REPORT
declarative. The following example specifies that the report
contains FLD-A, FLD-B, FLD-D, and FLD-F. It generates ten
spaces between FLD-D and FLD-F. SPACE00 signifies that no
spacing is to take place.

 REPORT FLD-A FLD-B FLD-D SPACE10 FLD-F

When SPACEnn is not specified, VISION:Report automatically
generates spacing for you, with the default spacing allowing
the report to be centered based upon the number and length of
each field.

If RPTSPCE=0, VISION:Report automatically generates spacing for you with
the default spacing allowing the report to be centered based upon the number
of length of each field.

If RPTSPCE=nn (a non-zero number) is specified, then VISION:Report
automatically generates a SPACEnn between each field.

Statement Format 3–129

REPORT

Term Description

mask-code Defines the edit mask code.

C Commas are inserted as appropriate.

E European variation of commas/decimals appear.

N Zero suppression is not performed.

n Signifies how many digits are to appear to the right of the
decimal point. Any number in the range of 0 through 9 may
be coded.

 INF1-8 2C may produce 999,999.00

Any VISION:Report or user-supplied edit masks may be
applied to the reported data fields. The following example
produces a report with two override headers and three
VISION:Report generated headers. The phone field is edited
with the phone number mask.
 REPORT INF1-30 (NAME) INF40-49 (PHONE-NUMBER) P

WORK-NUMBER CLIENT-NUMBER WST4-6

When OPTION EDIT=YES is specified (to compile, but not execute your
program), you get a proof copy of your report.

3–130 VISION:Report Reference Guide

REPORT

Term Description

override
headers

Heading written following the data names they head. Any
number of spaces (including none) may fall between the header
and the data name. This operand can be up to 50 characters
and must be enclosed in parentheses. If headers are not
specified, VISION:Report generates column headings from the
equated names and field definitions in the REPORT
declarative.

 INF1-20 (NAME) INF21-30 (ADDRESS)

The above example causes a heading of NAME above the data
column containing INF1-20, and ADDRESS above the data
column of INF21-30. The heading is centered or right-aligned
in case of numerics, and the fill characters used are periods.
(The HDRDOTS option allows suppression of these periods.)
Commas, spaces, and hyphens (in order of priority) force
headings into multiple lines.

(CUSTOMER NAME-AND ADDRESS) composes as CUSTOMER
 NAME-AND
 ADDRESS
(CUSTOMER-NAME-AND-ADDRESS) composes as CUSTOMER
 NAME
 AND
 ADDRESS
(T, I, T, L, E) composes as T
 I
 T
 L
 E

If override headers exceed 50 characters, a diagnostic is issued.
A line of headers that exceeds the option PRTSIZE is trimmed
(one character from each header) until it fits within that print
line.

REPORT can be stated once followed by the report fields or can be repeated at
the beginning of each line of report fields. Either format produces the same
report layout. VISION:Report builds the print line assigning positions to each
data name in the same order as in the REPORT statement. For example, your
first data name appears on the left side of the page, your second data name
appears next.

The following two examples produce the same report.

REPORT FLD-A FLD-B
 FLD-E FLD-X FLD-Y

or

REPORT FLD-A FLD-B
REPORT FLD-E FLD-X FLD-Y

Statement Format 3–131

RETURN

RETURN
 RETURN SORTED INTO flddef [ATEND {EOJ|seq-no}]

Term Description

RETURN Receives a sorted record and the location to where it is to be
delivered. This statement is used in conjunction with the SORT
AREA statement. The first time RETURN is executed, the
records that have been turned over for storage by the
RELEASE statement are sorted. The first sorted record is
returned or made available for use.

The second and subsequent times RETURN is executed, the
next sorted record is returned or made available for use, or you
are informed there are no more sorted records to process.

SORTED
INTO

Required noise words.

flddef The starting location (first position) of the record to be
returned, and must be an equated data name or
VISION:Report field definition.

ATEND Controls when the file reaches end of file.

seq-no
EOJ

Sequence number of statement to receive control when end of
file for the file occurs. When end of file does occur,
VISION:Report transfers control to the statement specified by
seq-no.

EOJ can also be coded in place of the sequence number,
causing VISION:Report to transfer to its end of job routine.

If the ATEND seq-no operand is coded, you must include a GOTO EOJ
statement in your EOJ routine to allow VISION:Report to perform operations
such as, close all files or take final totals.

Then the last record has been returned, an end of file on sorted records is
indicated in two ways:

■ VAL area position 200 is set to EBCDIC 'E' (hex C5).

■ The RETURN area is filled with high-values (hex FF).

You can test either of the areas with an IF statement or use the ATEND operand
to automatically transfer to either the statement whose sequence number is
nnnn or EOJ.

3–132 VISION:Report Reference Guide

RETURN

Examples
010 RETURN SORTED INTO WST1
020 IF VAL200 IS EQ C'E'
030 GOTO EOJ.

 This example varies slightly from the example shown in the RELEASE
statement section. This example selects the state, account code, and customer
name for customers in the state of California and Illinois. The example breaks on
state and account code and accumulates all installment payments. The printed
report shows the customer’s state, account code, name, and the current
installment payments.

EQU MY-AREA WST1-37 /* Entire area
 EQU STATE WST1-2 /* State code
 EQU CUST-NAME WST6-30 /* Name
 EQU ACCT-CODE WST31-32 /* Account code
 EQU INSTL-PAY WST33-37-P 2C /* Installment payment
 REPORT ACCT-CODE STATE CUST-NAME INSTL-PAY
 SORT AREA (F) RL37 ON STATE ACCT-CODE CUST-NAME
 BREAK 1 STATE SB 1 SA 2 PRINT C'STATE TOTALS'
 BREAK 2 ACCT-CODE SB 1 SA 2 PRINT C'ACCT TOTALS'
 BREAK F STATE SB 2 SA 2 PRINT C'FINAL TOTALS' IN TOT POS 35
 MOVE SPACES TO MY-AREA
100 GET INF ATEND 200
 IF INF153-154 IS EQ C'CA' /* Select California
 GOTO 150.
 IF INF153-154 IS NOT EQ C'IL' /* Select Illinois
 GOTO 100.
150 MOVE INF153-154 TO STATE /* Build sort work area
 MOVE INF85-109 TO CUST-NAME
 MOVE INF182-183 TO ACCT-CODE
 MOVE INF197-201-P TO INSTL-PAY
 RELEASE WST1 TO SORT /* Turn record to be sorted over to sort
 GO TO 100 /* Get another record from input file
200 RETURN SORTED INTO WST1 /* Start returning records
 IF @VAL-SORT-EOF EQ C'E' /* EOF on sort input
 GOTO 300.
 CHECKBREAKS
 ACCUM INSTL-PAY IN A 5 BYTE CTA ON BREAKS PRINT IN POS 47 2C
 PRINT REPORT
 GO TO 200
300 MOVE C'END OF TEST' TO PRT1
 PRINT TRIPLE SPACE
 GO TO EOJ
9999 END

Statement Format 3–133

REWRITE (VSAM Only)

REWRITE (VSAM Only)
REWRITE {INA-INZ|DET} [ONERROR seq-no]

Term Description

REWRITE Updates the last record retrieved from a VSAM file.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-INZ,
DET).

ONERROR
seq-no

Causes VISION:Report to automatically transfer to the statement
with the specified sequence number when a VSAM error occurs.
This allows you to examine the error codes (RC/EC) and take
appropriate action. If this operand is not coded and a VSAM
error occurs, execution continues with the next statement, and it
is your responsibility to check for these errors.

The length of the record was placed in the record length field preceding the I/O
area and in VAL243-246-B when the record was retrieved. If the length of the
record is to be changed, see the techniques shown in the section VSAM
Recommendations in Chapter 2.

3–134 VISION:Report Reference Guide

REWRITE (ISAM Only)

REWRITE (ISAM Only)
REWRITE {INA-INZ|DET}

Term Description

REWRITE Writes the contents of a file record area to the appropriate input
ISAM file. The input must be an ISAM file. Unpredictable results
occur if the REWRITE is used for other file types. Records may
not be added to an ISAM file.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-INZ,
DET).

Examples
010 GET INF
020 MOVE ZEROES TO INF95-100-P /* Move packed zeros to INF95-100
030 REWRITE INF /* Update the file in place
040 GO TO 010 /* Go get the next input record

010 GET INF /* Get an input record
020 IF INF95-100-P IS NOT NUMERIC /* If INF95-100-P is not numeric
030 MOVE ZEROES TO INF95-100-P /* Move packed zeros to INF95-100
040 REWRITE INF. /* And update the file in place
050 GO TO 010 /* Go get the next input record

 The previous example reads the entire INF file. Each record is inspected to see
if field INF95-100 (packed data) is numeric. The records that are not numeric in
INF95-100-P are cleared to packed zero and updated (rewritten) to the INF file.

A rewrite of one record in a block causes the entire block to be rewritten. Also,
ISAM records are processed in GET LOCATE mode, not in a work area. Thus, if
a record is modified, but no REWRITE is issued, the record is rewritten if any
record in the same block is rewritten.

Statement Format 3–135

SAMPLE

SAMPLE
SAMPLE nnnnnnn {INF|INA-INZ|DET}

This statement is declarative and therefore cannot be the subject of a transfer in
control statement (GOTO, PERFORM, as examples).

Term Description

SAMPLE Causes every nth record from the specified file to be passed in
response to a GET statement.

nnnnnnn The sample level desired. If you enter 10, the first GET returns
the first record for the specified file, the second GET returns
the eleventh record, the third GET the twenty-first record, and
so on.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-
INZ, DET). If a file name is not given, INF is assumed.

If a LIMITREADS statement is present for the specified file, only SAMPLE
records passed decrement the LIMITREADS count.

When using multiple input files, you are responsible for determining end of file
and EOJ. See GET for end of file processing.

Example
010 SAMPLE 100 IND
020 GET IND ATEND EOJ
030 MOVE IND1-85 TO PRT1
040 PRINT
050 GOTO 010

 In this example, list the IND file to determine if a previous job built the records
correctly. Rather than list the first part of the file, sample it by listing only
records 1, 101, 201, 301, as examples.

If the file is extremely large, you might include a LIMITREADS statement to
limit the number of records printed. See LIMITREADS for an example.

3–136 VISION:Report Reference Guide

SET

SET
SET {PTA-PTH|PTR} flddef
SET {PTA-PTH|PTR} {SAVE|RESTORE} [flddef]
SET {PTA-PTH|PTR|TSA|TBH} {UP|DOWN} {value|flddef}
SET {TSA|TBH} INITIAL

Term Description

SET Initialize or modify the address of a general or special purpose
pointer.

PTA-PTH Eight general purpose pointers.

PTR Special purpose pointer altered following a match on an IF ...
INCLUDES or a TRNT statement.

TSA Special purpose pointer to the first table entry used by an IF ...
ONTABLE statement when searching for a match.

TBH Special purpose pointer to the matching table entry following
a hit on an IF ... ONTABLE statement.

action Enter the initialization or modification action that is to be
performed on the address in the pointer specified. The various
allowable entries have the following effects:

<none> Sets the pointer to a flddef.

INITIAL Sets the TSA pointer to the first table entry or
the TBH pointer to the matching table entry
following the most recent hit on an
IF … ONTABLE statement.

RESTORE Sets the pointer to an address specified in a 4-
byte binary flddef or to the value saved in a
reserved internal location by a previous SAVE
statement.

SAVE Stores the address of a pointer in a 4-byte
binary flddef or in a reserved internal location.

DOWN Negatively adjusts the address of a pointer by
a value or by the value specified in a flddef.

UP Positively adjusts the address of a pointer by a
value or by the value specified in a flddef.

value A decimal number that a pointer is going to be adjusted by.

flddef A storage location containing the value that a pointer is going
to be set to or adjusted by.

Statement Format 3–137

SET

SET PTx SAVE|RESTORE without a flddef saves to or restores from an internal
area that is not addressable by the user. Only one value can be held at a time. To
save or restore multiple values, or if the value is to be addressable by the user,
specify a flddef.

The obsolete statement SET PTx PTR VALUE, which is the equivalent of SET
PTx PTR1, is maintained for upward compatability.

Set Allowable Forms:

■ TSA and TBH can be set to initial.

■ PTA-PTH, PTR, TSA, and TBH can be set up or down by a number or
flddef.

■ PTA-PTH and PTR can be set to flddef.

■ PTA-PTH and PTR can be SAVED or RESTORED.

Warning: No checking is done by VISION:Report to ensure that pointer
manipulations are within range of the intended data, within the partition or
region, as examples. This is your responsibility.

Also, review the warning in MOVE.

3–138 VISION:Report Reference Guide

SET PCC

SET PCC
SET PCC {flddef|SINGLESPACE|DOUBLESPACE|TRIPLESPACE|ZEROSPACE TOP-OF-FORM|C’x’|OFF}

Term Description

SET PCC This addresses and allows the overriding of the printer
carriage control character, sometimes referred to as the
ASA control character. See the description of C’x’ in the
following table for a listing of the printer carriage control
characters. This overrides any spacing operands used with
a PRINT statement (including PRINT REPORT). However,
PRINTCHAR, PRINTHEX, DOHEADERS, and
PAGETOTALS override any PCC settings. PCC is a
reserved pointer name to identify the printer carriage
control character.

flddef This defines a standard VISION:Report field definition or
EQU name whose contents are to be moved to the printer
carriage control. (Length must be one character; see C’x’
for allowable forms.)

ZEROSPACE Do not space any lines before printing, print over top of the
last line printed.

SINGLESPACE Space one line before printing.

DOUBLESPACE Space two lines before printing.

TRIPLESPACE Space three lines before printing.

TOP-OF-FORM Space to the top of the next page before printing. This does
not automatically cause header printing or increment the
VISION:Report page number.

C’x’ Must be one of the following valid ASA carriage control
characters:

blank Single-spacing
0 Double-spacing
- Triple-spacing
+ Suppress spacing
1-9 Skip to channel 1-9, respectively
A,B,C Skip to channel 10, 11, 12 respectively

OFF Turns the user PCC pointer off, and allows the operands
DOUBLESPACE and TRIPLESPACE in a following print
statement to be recognized.

Statement Format 3–139

SET PCC

Example
110 GET INF ATEND 250 /* INF1 Contains carriage control
120 SET PCC INF1 /* Character for record
130 MOVE INF2-80 TO PRT1 /* Move record to print
140 PRINT /* Print record
150 GO TO 120 /* Get next record
250 SET PCC TOP-OF-FORMS /* Skip to top of page
260 MOVE C’SUMMARY PAGE’ TO PRT30 /* For summary page
270 PRINT
280 SET PCC C’+’ /* Over-print on summary
290 MOVE C’_________’ TO PRT30 /* Page underline to make
300 PRINT /* Heading stand out, turn
310 SET PCC OFF /* Off PCC before continuing

3–140 VISION:Report Reference Guide

SETGENKEY (VSAM Only)

SETGENKEY (VSAM Only)
SETGENKEY {INA-INZ|DET} USING flddef {EQUAL|GENERIC nn} [ONERROR seq-no]

Term Description

SETGENKEY Positions a VSAM file so that the next GET statement returns
a record with a key equal to the specified field definition or a
key equal to or greater than the specified field definition.

INA-INZ
DET

File name can be any VISION:Report input file name (INA-
INZ, DET).

USING Required noise word.

flddef A field definition or an equated data name that contains the
key of the record at which it is to be positioned. If the file is
ESDS or RRDS, this area must be 4 bytes binary. The key for
an ESDS VSAM file is its RBA (relative byte address),
whereas an RRDS key is the relative record number of the
desired record. If the file is KSDS and the GENERIC operand
is not used, the length of this area must be the same as the key
length defined for it.

EQUAL Positions the file at the record with a key equal to the contents
of the field definition, if one exists. The GENERIC operand
positions the file at the record with a key equal to or greater
than the contents of the field definition. This operand cannot
be used on ESDS or RRDS VSAM files. EQUAL is the default.

GENERIC nn Positions the file at the record with a key equal to or greater
than the contents of the field definition. This operand cannot
be used on ESDS or RRDS VSAM files. The nn must be in the
range of 01-99, indicating the length of the key to be used in
positioning the file.

ONERROR
seq-no

Causes VISION:Report to automatically transfer to the
statement with the specified sequence number when a VSAM
error occurs. This allows you to examine the error codes
(RC/EC) and take appropriate action. If this operand is not
coded and a VSAM error occurs, execution continues with the
next statement. It is your responsibility to check for these
errors.

The following error is returned when the ONERROR operand is not coded:

 Error Word RC/EC

Error VAL253-255 VAL247-248

RECORD NOT FOUND 'RNF' X'0810'

Statement Format 3–141

SETGENKEY (ISAM Only)

SETGENKEY (ISAM Only)
SETGENKEY {INA-INZ|DET} USING flddef

Term Description

SETGENKEY Causes the next GET from an ISAM file to be the first record
at the generic key class pointed to by the field definition.

INA-INZ
DET

Enter the file name to indicate for which specified file the
pointers are to be initialized.

flddef Define the field (area and starting position) that contains the
generic key to be used in positioning the file. This field should
be the same length as the key of the ISAM file. The key placed
in this field should be appropriately padded with blanks or
binary zeros. An actual full length key may be used.

It is important to test the key of returned records after a GET statement to
ensure that SETGENKEY has found the beginning of the key class and
presumably to determine when the end of the key class has been reached.

The SETGENKEY, GET, and REWRITE statements may be combined to retrieve,
update, and rewrite individual records.

Keys of less value than the lowest in the file cause the first record in the file to
be retrieved.

Keys of greater value than the highest in the file cause VISION:Report to:

■ Place high-values (HEX FF) in the record area, and

■ Place an E in the appropriate EOF byte position in the VAL area. (Another
SETGENKEY for the same file resets the E to a space.)

SETGENKEY is designed to provide sequential processing starting at some
point other than the beginning of the file.

As a means of random processing, QUIKISAM is recommended. SETGENKEY
is not recommended. QUIKISAM is faster and provides precise hit or no hit
indicators.

The following example shows how to read transactions from the detail file, find
their matches in the INF (ISAM) file, update the INF record, and rewrite it in
place. The key is assumed to be 5 positions, starting in position 1 of the detail
record.

3–142 VISION:Report Reference Guide

SETGENKEY (ISAM Only)

Example
010 GET DET /* Get a detail record
020 IF DET1-5 IS HIVALUE /* Test for end of transactions
030 GOTO EOJ. /* Go to end of job on EOF
040 SETGENKEY INF USING DET1 /* Do the key set
050 GET /* Do get on ISAM
052 IF VAL196 IS EQ C'E' /* Test if key beyond end of file
054 GOTO 010. /* Yes, go get another DET record
060 IF DET1-5 IS EQ TO INF1-5 /* If keys are equal
070 PERFORM 300 THRU 400 /* Perform maintenance routine at
075 * /* 300-400
080 GOTO 010. /* Go get next transaction
090 IF INF1-5 IS LT DET1-5 /* If ISAM is less than transaction
100 GOTO 050. /* Go get an ISAM record
110 * Master is greater-Do NO HIT coding
120 GOTO 010
300 * Maintenance routine
310 * Move detail transaction data to INF file record
320 REWRITE INF /* Update ISAM
400 EXIT

Statement Format 3–143

SKIP

SKIP
SKIP {flddef|nnnn} {INA-INZ|DET|OUTPUT} [ATEND {seq-no|EOJ}]

Term Description

SKIP Causes nnnn number of records to be skipped (or ignored).
This statement may refer to any of the input files or the report
output. When the SKIP statement refers to the report output, it
causes nnnn number of print lines to be skipped, thus spacing
down the page.

nnnn
flddef

Enter the actual number of records (or print lines) to skip, or
the name of a VISION:Report field definition containing the
number.

Flddef must be a 2- or 4-byte binary area.

nnnn is any number from 1 to 2 gigabytes.

INA-INZ
DET
OUTPUT

Enter either the keyword OUTPUT or any input file name. The
keyword OUTPUT is associated with the printed output.

ATEND Controls when the file reaches end of file.

seq-no
EOJ

Sequence number of statement to receive control when end of
file for the file occurs. When end of file does occur,
VISION:Report transfers control to the statement specified by
seq-no.

If the ATEND seq-no operand is coded, you must include a GOTO EOJ
statement in your EOJ routine to allow VISION:Report to close all files, take
final totals, as examples.

When end of file occurs, VISION:Report:

■ Moves high-values (X'FF') to the file’s record area.

■ Moves an E to the appropriate position in the VAL area.

Examples
SKIP 10 OUTPUT /* Space down 10 print lines on report
SKIP 150 INF ATEND EOJ /* Read and ignore 150 records of INF

3–144 VISION:Report Reference Guide

Sorting

Sorting
VISION:Report has three different sorting options:

■ File sorting (sort one of the VISION:Report input files).

■ Area or record sorting (select, match, and create records to be sorted).

■ An immediate in-place sort of a VISION:Report area of storage.

The VISION:Report SORT feature functions much the same as the COBOL sort
statement, and invokes the installation’s sort utility to do the actual sorting of
records. VISION:Report interprets the SORT statement or SORT FILE or SORT
AREA declaratives and builds the necessary internals for the sort. To use the
SORT feature, you must have an IBM or IBM compatible SORT installed on
your system.

SORTWKxx files need not be specified in JCL for MVS. SORT uses the dynamic
allocation of work files. SORT control statements use the following convention:

Statement convention

File Sort Q+filename for example, QINF

Area Sort QARE

Sort Verb QARV

Your installation could require SORTLIB and SYSOUT DD statements, if MVS.

VSE SORTWKn will be required in the same manner (and number) as when
invoking a standard sorting operation.

The following table lists the SORT options. They may be included in a
VISION:Report at execution time and/or permanently made an installation
option with the QJOPTION macro.

Option Description

SRTSIZE=nnnn Amount of memory for the utility SORT to use expressed
in K (1024 bytes). The installation default memory size is
used when omitted or zero. A numeric value in the range
of 0 to 9999 is valid. Zero is the default.

Statement Format 3–145

Sorting

Option Description

SRTWKN=NO YES VISION:Report can sort multiple files or areas within the
same program concurrently if YES option is chosen.

■ MVS: To do this, VISION:Report dynamically
allocates input and sort files. The filename
consists of ‘Q’ followed by three letters
signifying the file or area, such as INF, DET, ARE
(SORT AREA) or ARV (SORT VERB). Work
areas are also dynamically allocated.

■ VSE: Since files cannot be dynamically allocated,
the proper DLBL and EXTENT statements must
be coded.

SRTERCD=nnnnn The estimated number of logical records to be sorted.
The estimate provides better sorting efficiency especially
with a large number of records involved. You must
specify 1 to 8 numeric digits. 150000 is the default.

SRTPGM=sortname The program name of the utility SORT which
VISION:Report loads to do the actual sorting. The
default program name SORT is used when omitted.

SRTADJ=NO YES The SRTADJ option allows you to define the true offset
relative to the start of an area. See SRTADJ Option. NO is
the default.

SRTMSG=xx MVS only. The SORT messages option expressed in two
characters. Any two characters may be used that are
valid with the particular SORT package that is used. The
installation default prevails when omitted.

The following message codes apply to most SORT
packages available. Some program product sort routines
allow codes in addition to those listed below.

SRTMSG= NO No messages are generated
 CC Critical messages only, routed to
console
 CP Critical messages only, routed to printer
 AC All messages, routed to console
 AP All messages, routed to printer

U339DMP=YES NO Should dump be produced when abending due to a
SORT operation failure? NO is the default.

Note: For more information on SORT parameters, see the section
ADDITIONAL SORT OPTIONS.

3–146 VISION:Report Reference Guide

SORT Fields

SORT Fields
SORT flddef1 [flddef2] RLnnnnn ON flddef [(D)] [flddef [(D)] ...]

Term Description

SORT Performs an immediate in-place ordering of records in a
VISION:Report area of storage using the following parameters.

flddef1 Specify the area of storage to be sorted. If the number of
records to be sorted does not vary during the course of
program execution, include the starting and ending offsets of
the area. Otherwise, include only the starting offset of the area.
The area size and the RLnnnnn parameter determine the
number of records. The area size must be evenly divisible by
the record length.

flddef2 Optional. If flddef1 is defined including only a starting offset,
then include this parameter. Specify a 2- or 4-byte binary field
containing the number of records to be sorted. Each time the
SORT statement is executed, VISION:Report uses the value in
this field definition to determine the number of records to be
passed to the sort utility.

RLnnnnn Enter RLnnnnn, where nnnnn is the length of your fixed length
records. RL may be stated with a 1- to 5-digit number.

ON Required noise word.

flddef Enter the equated data name or field definition of the field on
which you want the major sort sequence. If you define more
than one sort field, each subsequent field is a more minor sort
sequence than the last (for example, the most major sort
sequence is the first field, then the second).

(D) If the previous field is to be sorted into descending sequence,
enter (D). Otherwise, enter the equated data name or field
definition of the field you desire to be sorted next (if any). The
default is ascending sequence.

Statement Format 3–147

SORT Fields

Examples

Using a single field definition specifying a starting and ending offset:

EQU WA-TABLE WST5001-5030
EQU KEY1 WST5002-5003
EQU KEY2 WST5005-5006-B
EQU KEY3 WST5008-5010-P
EQU WA-TABLE /* Redefines
EQU REC1 (10) X’00C1C20012340012345C’
EQU REC2 (10) X’00C1C20056780012345C’
EQU REC3 (10) X’00C4C50056780012345C’

SORT WA-TABLE RL10 KEY2 (D) KEY3 KEY1

Using two field definitions, one specifying a starting offset only and a second
with the value of the number of records to be sorted.

EQU WA-PTR WST5001
EQU KEY1 WST5002-5003
EQU KEY2 WST5005-5006-B
EQU KEY3 WST5008-5010-P
EQU WA-RECS WST6101-6104-Bb/X’00000003’
EQU WA-PTR /* Redefines
EQU REC1 (10) X’00C1C20012340012345C’
EQU REC2 (10) X’00C1C20056780012345C’
EQU REC3 (10) X’00C4C50056780012345C’

SORT WA-PTR WA-RECS RL10 ON KEY2 (D) KEY3 KEY1

An example of using SORT fields and TABLSPEC is in the distributed examples
member TBLSRT2.

3–148 VISION:Report Reference Guide

SORT AREA

SORT AREA
SORT AREA {(F)|(V)} RLnnnnn ON flddef [(D)] [flddef [(D)] ...]

Term Description

SORT AREA Sorts only a portion of a file (for example, 10 percent). Area
sorting also allows you to match data from any number of
input files (for example, VSAM files, ISAM files, IMS, DL/I),
pick up extra data and build a record format that suits your
purpose, and then sort the records into the sequence you need
for reporting, processing, writing sorted output, as examples.

(F), (V) If record format is variable length records, enter (V). Fixed
length records are assumed. However, you may code (F) to
indicate fixed length records.

RLnnnnn Enter RLnnnnn, where nnnnn is the length of your fixed length
records, or in the case of variable length records nnnnn must
be the maximum length of the records you want to process.
(RL may be stated with a 1- to 5-digit number.)

ON Required noise word.

flddef Enter the equated data name or field definition of the field on
which you want the major sort sequence. If you define more
than one sort field, each subsequent field is a more minor sort
sequence than the last (for example, the most major sort
sequence is the first field, then the second).

(D) If the previous field is to be sorted into descending sequence,
enter (D). Otherwise, enter the equated data name or field
definition of the field you want to be sorted next (if any). The
default is ascending sequence.

The SORT AREA statement also requires the use of the RELEASE and RETURN
statements.

Statement Format 3–149

SORT AREA

Examples
SORT AREA RL100 ON WST21-29 WST161-164-P (D) WST30
SORT AREA (V) RL300 ON INF7-12 INF16-B INF14-15-B
SORT AREA RL200 ON PTA21-26-P (D)
SORT AREA RL80 ON ORDER# ORDER-DATE /* EQU data name

The SORT statement has the following limitations:

■ All operands must be on one statement.

■ Sum of all SORT fields may not exceed 256 bytes.

■ The work area for the sort control statements is 512 bytes. As many fields
may be specified as will fit in this area.

■ File sorts must either be fixed or variable record types.

The VISION:Report field definitions or equated data names referenced in the
SORT AREA statement are assumed to be relative to the first position of each
logical record (AREA), unless the SRTADJ option is used. (See SRTADJ Option.)

If you want to SORT records on positions 1 through 5 and RELEASE the record
at WST251, the SORT AREA statement requires that WST1-5 be specified as the
SORT control field.

To resolve this, specify PTn1-5 as the SORT control field, and RELEASE the
record to SORT as PTn1.

SET PTn WST251

To SORT records that are of variable length or undefined until the point of use:

■ Specify variable (V) on the SORT AREA statement. You must specify a
record length sufficiently large enough to hold the maximum record you
will ask the SORT to handle.

■ Move to VAL-201-204-B the length of each record prior to executing the
RELEASE statement.

VISION:Report uses this length to gather the record, from the specified location,
into an internally generated work area. The record is converted to IBM standard
variable length record (RL00DATA-DATA-DATA) prior to turning over to the
SORT.

When you ask for the record to be returned, the RL00 is stripped off. The data
portion is moved into the area you requested. VAL201-204-B is not required and
is ignored on file sorting and fixed length record sorting.

When you ask for the record to be returned, the record length (in binary) is
placed in VAL201-204-B on variable length record sorting only.

3–150 VISION:Report Reference Guide

SORT AREA

If you are going to sort existing true IBM variable style records in the
RL00DATA-DATA format, the RL portion includes the 4 bytes occupied by
RL00 as part of the length found stored in the RL portion.

Data starts in position 5. This has an effect on what position you specify a field
to start in.

The minimum record length allowable using SORT AREA (V) is 18 bytes.

SRTADJ Option

The option SRTADJ makes it easier to code SORT declarations. This option
allows you to define the true offset relative to the start of an area. If
SRTADJ=NO (default), the field definition of sort key field in the SORT AREA
declarative must be relative to the start of the field definition in the RELEASE
statement.

If SRTADJ=YES, the field definition of area sort key fields must be the true
offset relative to the start of the area. With SRTADJ=YES, you do not have to
use PTRs or extra EQU statements to define the sort keys for the SORT
declarative. Check with the person who installed VISION:Report to find out
what option is the default.

Examples

SRTADJ=NO (default):

EQU S-AREA WST501-600
EQU S-AREA-KEY1 WST501-502
EQU S-AREA-KEY2 WST505-510
EQU FAKE-KEY1 WST1-2
EQU FAKE-KEY2 WST5-10

SORT AREA RL100 ON FAKE-KEY1 FAKE-KEY2

MOVE ... TO S-AREA-KEY1 /* Build your record
MOVE ... TO S-AREA-KEY2

RELEASE S-AREA TO SORT

SRTADJ=YES:

The EQU statements for FAKE-KEY1 and FAKE-KEY2 are not required, so you
can replace the SORT AREA statement above with:

SORT AREA RL100 ON S-AREA-KEY1 S-AREA-KEY2

Statement Format 3–151

SORT AREA

Sort Area (V) and Multiple SORT Executions

An example of sorting variable length records and multiple executions of the
SORT are shown below. The assumption can be made that a large parts
inventory file is in sequence by product and part number.

The request is made for a listing from this file, in part name sequence, within
product code (that is, file is already in sequence on the major control field). The
SORT is invoked for each product code upon recognizing a change in the
product code field.

 SORT AREA (V) RL160 ON INF35-49 /* SORT control
 ATEND 190 /* At INF EOF, process last prod
 MOVE SPACES TO WST201-205 /* Clear prod control break field
100 GET /* Read an INF record
110 IF INF5-9 IS EQ TO WST201-205
 MOVE INF1-2-B TO VAL203-204-B /* Place record length in VAL
 RELEASE INF1 TO SORT /* Record passed to SORT
 GOTO 100.
 IF WST201-205 IS BLANK
 MOVE INF5-9 TO WST201-205
 GOTO 110.
*
190 MOVE SPACES TO WST201-205 /* Clear prod control break field
 MOVE SPACES TO VAL200 /* Clear SORT EOF indicator
200 RETURN SORTED INTO WST1 /* Record returned from SORT
 IF VAL196 IS EQ TO C'E' /* Test INF EOF
 IF VAL200 IS EQ TO C'E' /* Test SORT EOF
 GO TO EOJ. /* EQ, go to EOJ
 IF VAL200 IS EQ TO C'E' /* Test for SORT EOF
 GOTO 110. /* EQ, go process next prod
 MOVE WST35-49 TO PRT1
 MOVE WST5-9 TO PRT21
 MOVE....ETC
 PRINT /* PRINT the record
 GOTO 200 /* Go return next record
 END

To clarify, the following code is correct:

 SORT AREA (F) RL525 ON PTA1-5
 SET PTA WST251
100 GET INF ATEND 900
 .
 .
 Build record for sorting, starting at WST251.
 .
 .
 RELEASE PTA1 TO SORT
 GOTO 100
0900 RETURN SORTED INTO WST251 ATEND 1000

Statement 900 could use OFA1 instead of WST251.

3–152 VISION:Report Reference Guide

SORT FILE

SORT FILE
SORT FILE {INA-INZ|DET} ON flddef [(D)] [flddef [(D)]...]

Term Description

SORT FILE Sorts one of your input files before you see the data. When you
issue a GET or GET DET, you receive a sorted record.

INA-INZ
DET

Enter the file name to be sorted (INA-INZ, DET).

ON Required noise word.

flddef Enter the equated data name or field definition of the field on
which you desire the major sort sequence. If you define more
than one sort field, each subsequent field is a more minor sort
sequence than the last (for example, the most major sort
sequence is the first field, then the second).

(D) If the previous field is to be sorted into descending sequence,
enter (D). Otherwise, enter the equated data name or field
definition of the field you desire to be sorted next. The default
is ascending sequence.

Examples
SORT FILE INF ON INF21-29 INF161-164-P (D) INF30
SORT FILE DET ON DET1-l2 DET16-B DET14-15-B
SORT FILE INC ON EMP-NAME /* EQU data name
SORT FILE IND ON GROSS (D) /* EQU data name

The SORT statement has the following limitations:

■ All operands must be in one statement.

■ Sum of all SORT fields may not exceed 256 bytes.

■ The work area for the sort control statements is 512 bytes. As many fields
may be specified as will fit in this area.

■ File sorts must either be fixed or variable record types.

■ The MEDIA (columns 4-7) of the SORT file specified cannot be TAPU or
TAPV.

The following examples demonstrate how to specify the sorting of a VSAM file
by Plant (major) and Department (minor), and how to print and accumulate
totals for the file.

Statement Format 3–153

SORT FILE

Be sure to include JCL for SORT work files. For MVS, include a SYSOUT DD
statement, and possibly SORTLIB if this library is not in the concatenated list.
Some JCL examples are shown below, with the additional JCL statements in
bold print.

VSE JCL Example
// JOB QJSORT SORT FILE
// DLBL SORTWK1,'SORTWK1',0
// EXTENT SYS003,volser, as examples
// ASSGN SYS003,DISK,VOL=volser,SHR
// DLBL filename,'your.VISION.lib' Phase Library
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL INF,'your.VSAM',,VSAM
// EXEC QUKBJOB,SIZE=512K
INFKSDS 0080 /* VSE I/O parameter
 ... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//QJSORT JOB (800-0000,0000),'SORT FILE'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR if needed
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=your.VSAM INF
//SYSIN DD *
 ... VISION:Report statements as shown below
/*
//

VISION:Report Example
OPTION SEQCHK=NO
EQU PLANT INF1-2
EQU DEPT INF4-5
*
SORT FILE INF ON PLANT DEPT /* Define SORT fields
*
BREAK 1 DEPT ... /* Define control-break fields
BREAKS 2 PLANT ...
*
100 GET /* Sorted file is read
*
CHECKBREAKS /* Check control-break fields
MOVE PLANT TO PRT1
MOVE DEPT TO PRT8
MOVE ...
PRINT /* PRINT
ACCUM ... /* ACCUM field
GOTO 100
END

3–154 VISION:Report Reference Guide

ADDITIONAL SORT OPTIONS

ADDITIONAL SORT OPTIONS
In addition to the SORT options that can be specified in the OPTION statement
described in the section Sorting, there are several parameters that can also be specified
on the SORT statement itself.

These specifications are all in the format of XXVVVVVVVV, where:

XX – is an option

VVVVVVVV – 1-8 byte value for the option above, unless specified otherwise.

ES – Estimated number of records. This overrides the OPTION SRTERCD=. This must
be numeric.

Example: ES2400 – estimated number is 2400.

(OS/390 only)

GV – Overrides the VSE installation default sort GVSIZE=value for GETVIS sorting.
There is no equivalent VISION:Report OPTION parameter for this. This must be
numeric.

Example: GV123456 -- allocate 123,456 bytes of GETVIS storage.

(VSE only)

PG – SORT program name (executable module). This overrides the OPTION
SORTPGM=.

Example: PGCASORT – invoke a program named "CASORT" to execute the SORT. If
you have several different sort programs at your site, you can use a different one for
each SORT. As an example, you could rename the IBM sort program name to DFSORT,
and the CA sort program name to CASORT. You could sort multiple files, each with a
possibly different sort program.

PR – sort message print option. This overrides OPTION SORTPRT=YES/NO. The
VISION:Report SORTPRT=YES generates a sort PRINT=ALL, while SORTPRT=NO
generates a sort PRINT=CRITICAL. Select NONE, ALL or CRITICAL.

Example: PRALL – print all messages.

RT – sort message routing. This overrides OPTION SORTRTE=.

Example: RTLOG – route sort messages to the LOG.

ST – storage value specified in number of bytes. This overrides the VISION:Report
OPTION SORTSIZ=. This must be numeric.

Statement Format 3–155

SUB

Example: ST123456 – allocate 123,456 bytes of storage.

WF – number of work files. This overrides the VISION:Report OPTION SORTWRK=.
This must be numeric.

Example: WF4 – allocates 4 work files for the SORT.

WN – name of work files. This must be 4 bytes long and requires the VISION:Report
OPTION SRTWKN=YES. This overrides the default work file names.

Example: WNCUBS – the work file names become CUBSWKn

Following are some sample VISION:Report SORT statements:

SORT FILE INF (V) PGCASORT ST234500 PRCRITICAL WF3 WNCUBS ON

SORT AREA RL25 ST50000 PRALL GV200000 PGDFSORT ON

SUB
SUB {flddef1|C'xxx'|P'nnn'|X'...'} FROM flddef2

Term Description

SUB Subtracts the first value from the second value. The result is
placed in the second value (flddef2).

flddef1
C'xxx'
P'nnn'
X'...'

Defines the flddef or literal with a limit of 19 digits EBCDIC
or a packed field of 10 bytes (19 digits and sign). Binary fields
1-8 bytes long may be specified in either flddef. Fields and
literals in any data format may be subtracted from any field in
any other data format. Automatic data conversion is
performed in all cases.

FROM Required noise word.

flddef2 Defines the area/field name that is to be subtracted from
flddef1. This also contains the result of the subtraction. The
rules for flddef2 are the same as flddef1.

3–156 VISION:Report Reference Guide

SUB

Examples
SUB INF1-3 FROM WST6-9 /* Subtract EBCDIC from EBCDIC
SUB INF7-9-P FR OFA10-19-P /* Subtract packed from packed
SUB WST1-2-B FR WST11-16-B /* Subtract 2 byte binary from 6 byte binary
SUB INF8-10-P FR PUN1-10 /* Subtract packed from EBCDIC
SUB INF47-51-B FR OFA21-26-P /* Subtract 5 byte binary from packed
SUB C'1' FROM WST5-7 /* Subtract a literal from EBCDIC
SUB C'123' FR OFA7-19-P /* Subtract a literal from packed
SUB C'4' FR OFX1-8-B /* Subtract a literal from 8 byte binary

SUB treats fields with leading or all blanks (EBCDIC format) as zeros in the
blank positions.

Statement Format 3–157

TABLSORT

TABLSORT
TABLSORT {TSA1|flddef} C'entry-length' C'key-start' C'key-length' {C'A'|C'D'}
{C'C'|C'P'}

Term Description

TABLSORT This is a subroutine that sorts VISION:Report tables in place
in memory according to user-defined sort specifications.
TABLSORT is executed through coding a statement in the
following format:

TSA, flddef TSA1 passes to the routine the address of byte 1 of the first
table entry. It is recommended that you code SET TSA
INITIAL ahead of the CALL TABLSORT to ensure that TSA is
pointing correctly at entry to TABLSORT. VISION:Report
users may also specify sorting to begin at any VISION:Report
area.

C'entry-length' A 2-digit number equal to the length of one table entry. If
each entry consists of 3-byte argument and a 5-byte function,
then code C'08' for the entry length.

C'key-start' A 2-digit number equal to the starting position of the sort key
within the table entry. If you want to sort on the function in
the 3/5 table, then code C'04' for the first byte of the 5-byte
function.

C'key-length' A 2-digit number equal to the length in bytes of the sort key.
If sorting on the function on the 3/5 table, code C'05' for the
length of the 5-byte function.

C'A', C'D' If the table is to be sorted in ascending sequence on the
specified key field, code C'A'. For a descending sequence sort,
code C'D'.

C'C', C'P' If the sort key field is other than packed decimal format, code
C'C'. If the sort key field is packed decimal, code C'P'.

TABLSORT recustomizes itself (according to the user specifications) each time it
is entered. You may, therefore, sort the table or data to several different
sequences within one VISION:Report.

Sorting the table on other than a table argument sort key loses the binary table
lookup integrity needed to execute an IF...ONTABLE. You must resort the table
back to the argument ascending sequence before attempting IF...ONTABLE.

For an example of the use of the TABLSORT, see the section Examples in
Chapter 4.

3–158 VISION:Report Reference Guide

TABLSORT

TABLSORT requires a high-value entry at the end of the table or data stream
being sorted of at least one high-value (X'FF'). Therefore, you can sort account
numbers, dates, amounts in examples like DET, INA-INZ, PRT and WST.

The first position of each entry may not be X'FF' and there must be one X'FF' at
the end of the entries or groups to be sorted.

Example

Assume you want to print five position part numbers with one space in
between, five per print line, and you want to sequence them lowest to highest.

Move the part numbers to the print area followed by one space. After moving
the last one, move a high-value (X'FF') to the position in which the sixth part
number would begin, and call TABLSORT or use the SORT fields statement to
sort them, then print them.

PRT1 Print Work Area Before Sort

12345b/12341b/12349b/88765b/00123b/F
 F

CALL TABLSORT PRT1 C'06' C'01' C'05' C'A' C'C'

Then print work area after sort

00123b/12341b/12345b/12349b/88765b/F
 F

This technique works for transactions of, for example, account and amount, part
number and price, and names, which can be in any sequence in the input data,
but you can resequence before printing or processing.

If more than 2 digits are required for starting position and/or length fields, use
the SORT fields statement, or use TABLSOR2 in place of TABLSORT.

Note: TABLSOR2 has the same format as TABLSORT, except that an 8-digit
number is required for:

■ Table entry-length — length of each table entry.

■ Key-start — starting position of the sort key.

■ Key-length — length in bytes of the sort key.

Statement Format 3–159

TABLSPEC

TABLSPEC
TABLSPEC max-entries arg-start arg-length [P] [funct-start funct-length] [LIST]

Term Description

TABLSPEC Defines the format of the variable data and the format of
the loaded table. Only one TABLSPEC statement is allowed
per VISION:Report program. TABLESPEC lets you load
variables from complex IF statements into a data table. You
can then reference the variables with the IF...ONTABLE
statement.The TABLSPEC statement is free form. Each
parameter can be any number of digits up to a maximum
of 15, as long as it is terminated by at least one space. The
next parameter then follows.

While the parameters are considered free form, each
parameter must follow in the sequence as specified in the
fixed-format (for example, arg-length cannot be specified
before arg-start).

max-entries Maximum number of table entries. For any one execution
of this job, you can have fewer than the maximum entries
loaded. For example, if you specify 10, you can have from 1
to 9 entries.

Note: The max-entries becomes high-values, not max-
entries plus one. If your maximum entries are 50, you
should add one more (51) for the last entry, which is filled
with high-values to signify the end of the table.

arg-start Leftmost position in the table statements of the argument
field.

arg-length Length in bytes of the argument field on the table. This
cannot exceed 80 bytes when used in conjunction with
IF...ONTABLE statements. If a packed argument is
specified, the argument is packed directly from the table
statement into the table. Therefore, the EBCDIC format
argument in the table statements must be of the correct
length to pack appropriately. Thus, if a 3-byte packed
argument is specified then a 5-digit EBCDIC number must
be prepared for each table statement starting in the
statement column specified in TABLSPEC columns 19-20, if
the fixed format of the TABLSPEC statement is used.

P Format of the argument field. Leave blank if the argument
is EBCDIC. Enter P for a packed format argument.

3–160 VISION:Report Reference Guide

TABLSPEC

Term Description

funct-start Leftmost position in the table statements of the function
field. If there is no function, this field may be left blank. If
this operand is coded, funct-length must also be coded.

funct-length Length of the function. All functions must be EBCDIC.

LIST Enter LIST to cause table entries to be listed after they have
been sorted.

Free Format

 TABLSPEC 11000 0900 5 P
0001..05...10...15...20...25...30...35...40...45...50...55

In the above example, 11000 is the maximum number of table entries, 0900 is the
leftmost position in the table statements of the argument field, 5 is the length in
bytes of the argument field on the table and the format is packed. The
parameters were deliberately spaced apart from each other, with more than one
space in between on most parameters, just to demonstrate the new TABLSPEC
format. The above example used 0900, with leading zeros, though it is not
necessary.

Fixed Format

The fixed-format, although not as flexible or required, is shown below for your
convenience. The sequence of its contents are identical to the free format.

 TABLSPEC 0900 01 05
0001..05...10...15...20...25...30...35...40...45...50...55

In the above example, 0900 is the maximum number of table entries, 01 is the
leftmost position in the table statements of the argument field, and 05 is the
length in bytes of the argument field on the table. The format, normally in
position 25, is blank, signifying EBCDIC. (It would have been filled with a P if
packed.)

Column Contents

1-3 Sequence numbers

5-12 TABLSPEC

14-17 Maximum number of table entries. For any one execution of
this job, fewer than the maximum entries may be loaded.

19-20 Leftmost position in the table statements of the argument field
(leading zeros are required).

Statement Format 3–161

TABLSPEC

Column Contents

22-23 Length in bytes of the argument field on the table (leading
zeros are required). This cannot exceed 80 bytes when used in
conjunction with IF...ONTABLE statements. If a packed
argument is specified, the argument is packed directly from the
table statement into the table. Therefore, the EBCDIC format
argument in the table statements must be of the correct length
to pack appropriately. If the fixed format of the TABLSPEC
statement is used, and if a 3-byte packed argument is specified,
then a 5-digit EBCDIC number must be prepared for each table
statement starting in the statement column specified in
TABLSPEC columns 19-20.

25 Format of the argument field. Leave blank if the argument is
EBCDIC. Enter P for a packed format argument.

27-28 Leftmost position in the table statements of the function field
(leading zeros are required). If there is no function, this field
may be left blank.

If the funct-start operand is coded, funct-length must also be
coded.

30-31 Length of the function (leading zeros are required). All
functions must be EBCDIC.

33-36 Enter LIST to cause table entries to be listed after they have
been sorted.

User Data Tables

IF INF1-3 IS EQ TO C'TRN'

This example would validate a transaction code. However, this is not practical
where there are 20 or 30 or more valid transaction codes.

IF INF15-21 IS EQ TO C'1234567'
 MOVE C'5467321' TO INF15-21.

To assist you in handling this type of situation, a user table loading feature is
available. In the second example above, the following technique might be used:

To validate data or make changes to files you might code:

Similarly, for a small number of changes to a file you might use the following
code to change the contents of one part number field. Once again, it is not
practical if there are many changes to be made.

IF INF15-21 IS ONTABLE
 MOVE FUN1-7 TO INF15-21.

3–162 VISION:Report Reference Guide

TABLSPEC

Prepare statements, one statement per part number change, with the old part
number in statement columns 1-7 and the new part number in columns 8-14.
These statements would follow immediately behind the END statement.

A free form TABLESPEC statement would contain the following:

■ Sequence number

■ TABLSPEC

■ Number of part number changes

■ 01 (table statement column where argument starts)

■ 07 (argument size)

■ Blank (If argument were packed, a P would be entered)

■ 08 (table statement column where function starts)

■ 07 (function size)

■ LIST (list sorted table entries)

All VSE memory available in the partition in excess of the basic VISION:Report
requirements is available for table loading, called programs, and input/output
areas and work areas. Table space is acquired before I/O space is acquired.

All MVS input output areas, I/O work areas, table space, and called programs
are acquired through GETMAIN and/or LOAD MVS functions.

You need not be concerned with excessive run-time for larger tables, as the
loaded table is searched with a binary table lookup. This technique searches the
largest table in relatively few compares (that is, 14 compares on an 800 entry
table).

To use a binary table lookup, the table must be in argument sequence. An
internal sort is performed on the table after it has been loaded. When loading
larger tables (over 1000 entries), the sort time is reduced significantly if, when
loaded, the table is in sequence by argument.

The table is always sorted into key sequence if loaded by VISION:Report, unless
the SORTABL option (see OPTION) specifies that the table is not to be sorted. If
you request that the table not be sorted, then any IF...ONTABLE statement
causes a serial search of the table starting at the first entry in the table. Also,
note that if a search for the key fails and SORTABL=NO, TBH points to the next
available position in the table in which a new entry may be loaded. This feature
is very useful when building a table dynamically.

Statement Format 3–163

TABLSPEC

OPTION SORTABL=NO
005 TABLSPEC 0100 01 10 11 05
010 GET DET ATEND 100 /* Get table record
020 IF DET1-10 IS ONTABLE /* Look for argument
030 ADD C'1' TO TBH11-15 /* Found it-update counter
040 GOTO 010.
050 MOVE DET1-10 TO TBH1-10 /* TBH point to next available entry
060 MOVE C'00001' TO TBH11-15
070 GOTO 010
100finish processing

In this example, after the table has been loaded, you could use the TABLSORT
routine to sort the table into argument sequences. Even though the table has
been sorted into argument sequence, a serial search is performed because
SORTABL=NO.

A table can be loaded by one of two methods:

■ Automatically

010 TABLSPEC 0100 01 07 08 07
020 GET /* Get detail record
030 IF INF1-7 IS ONTABLE /* Lookup order # in table
040 MOVE TBH8-14 TO INF1-7. /* Replace order # with new #
050 MOVE INF1-80 TO OFA1 /* Move input record to output
060 WRITE OFA /* Write output record
070 GOTO 020
999 END
11111111010101
33333333030303
66666666060606
00000011000000

In this example, the statements that follow the END statement are the user-
defined table statements. VISION:Report loads these statements and sorts
them into argument sequence unless the SORTABLE option is NO (see
OPTION).

If the maximum number of table entries is 20 or less, a serial search is
performed whenever an IF...ONTABLE statement is executed. If the
maximum number of table entries is greater than 20, a binary search is
performed whenever the IF...ONTABLE statement is executed, unless the
SORTABL OPTION is NO, in which case a serial search is always
performed.

3–164 VISION:Report Reference Guide

TABLSPEC

■ User Loading

TABLSPEC 0101 01 07 08 07 /* Max is really 100 entries
020 SET TSA INITIAL
025 MOVE C'000' TO WST1-3 /* Initialize table entry count
030 GET DET ATEND 100 /* Get table statement
040 MOVE DET1-14 TO TSA1-14 /* Move table entry to table
045 SET TSA UP 14 /* Point to next table slot
050 ADD C'1' TO WST1-3 /* Update # table entries
060 IF WST1-3 IS GT C'100' /* Check for table overflow
070 MOVE C'TABLE OVERFLOW' TO PRT1 /* Move error message
080 PRINT /* Print error message
090 GOTO EOJ.
095 GOTO 030
100 SET TSA INITIAL
110 CALL TABLSORT TSA1 C'14' C'01' C'07' C'A' C'C’ /* Sort table
120 GET INF ATEND EOJ /* Get input record
130 IF INF1-7 IS ONTABLE /* Lookup order # in table
140 MOVE TBH8-14 TO INF1-7. /* Replace order # with new #
150 MOVE INF1-80 TO OFA1 /* Move input record to output
160 WRITE OFA /* Write output record
170 GOTO 120
180 END

In the example above, for VSE, file I/O statements for INF and DET are
required, as well as a "/*" (EOF) statement is also required after the
VISION:Report statement "180 END".

The statements 020 through 095 are examples of statements that are used to load
the table. Statements 100 and 110 sort the table into argument sequence (refer to
TABLSORT for a discussion of this subroutine). When the IF...ONTABLE is
executed, VISION:Report performs a binary search to find a match (table
maximum is more than 20 entries) unless the SORTABL OPTION was NO. That
OPTION causes a serial search to be performed starting at the first entry in the
table.

Warning: If the following conditions are both true, you must ensure that the
table is in argument sequence before the first IF...ONTABLE is executed.
Failure to sort the table destroys the integrity of the binary search and
results in false hits or no hits.

MAXIMUM TABLE ENTRIES IS GREATER THAN 20.

SORTABL=YES (installation default).

Statement Format 3–165

TABLSPEC

Advanced Techniques for Referencing Tables

Two advanced methods of referencing user tables are available.

■ The ability to modify table entries as part of the true processing of an
IF...ONTABLE statement.

■ The ability to address each table entry through indexing (or subscripting)
the table from the first entry to the last.

These advanced features are explained in detail below.

Referencing Hit Entries Following an IF...ONTABLE

The table lookup routine stores the address of the table argument that matches
your search argument in an IF...ONTABLE statement. The table entry pointed at
by the stored address has been assigned the area name TBH for table hit. By
citing TBH as the area part of a field definition, you may reference any part of
the table entry.

As an example, consider that you have loaded a table consisting of entries with
a three-character argument followed by a five-character function consisting of
EBCDIC zeros. The objective is to read a file and obtain a count of how many
times each table argument occurs in the file. The following sequence illustrates
count accumulation.

001 ATEND 200
. .
. .
010 GET
020 IF INF3-5 IS ONTABLE
030 ADD C'1' TO TBH4-8. /* Give the length/data type within table
040 GOTO 010
. .
. .

When end of file is reached, the program transfers to statement 200. At this
point, each table function contains a count of how many times its associated
argument was contained in positions 3-5 of an input record.

Although modification of table arguments is allowed, it is not recommended.
The ascending sequence of table arguments could be lost; if so, the integrity of
binary search technique used by VISION:Report can no longer be ensured.

TBH may be referenced the same as any other VISION:Report area. The next
successful table lookup causes TBH to point to a new entry. On a no-hit, TBH
and FUN still reference the last successful IF. You must provide for this
condition.

3–166 VISION:Report Reference Guide

TABLSPEC

Indexing Through the Table

The ability to modify table entries creates a requirement that you be able to
retrieve the modified entries. To demonstrate this, the following program shows
the user loading the table and initializing parts of the table, usage of table start
address (TSA) and the SET TSA statement, the IF ... ONTABLE condition,
retrieval of the modified entries, and the previously introduced table hit (TBH).

Example

After loading the table, the TSA is set to the beginning with the SET TSA
INITIAL statement; this is shown throughout this program. At sequence 010
through 019, the State table is loaded: 2 bytes for the state number, 22 bytes for
its corresponding function, with the last 5 bytes used for a packed counter. Each
table entry is 30 bytes long. Note that a check is made to make sure that the
maximum number of entries, 55 is not exceeded (although in reality there are
only 52 entries). Also note that high-values are moved to the last table entry.
These are good practices to ensure that you do not go beyond the maximum
number of table entries.

Statements 030 through 099 read an input record, containing a state number in
the first two positions. A table lookup is automatically done by the IF INF1-2 IS
ONTABLE statement; if a match is found (table hit), then the counter for that
table entry is incremented and moved (along with the full-spelling of the state
name) to the print area. The first two positions of the input are moved to print
area and printed.

When the input file reaches end of file, statements 120 through 160 loop through
all the table entries, printing only those that had any input activities (those with
a counter that is non-zero). Note that a check is made for high-values for each
table entry. When that table entry is reached, you know you are at the end of all
pertinent table entries.

Statement Format 3–167

TABLSPEC

EQU TBL-COUNT WST1-2-P ZEROS
 TABLSPEC 0056 01 02 03 28 /* State number & name
 SET TSA INITIAL /* Ensure you are at beginning
010 GET DET ATEND 20 /* Build table
 ADD C'1' TO TBL-COUNT
 IF TBL-COUNT GT P'55' /* Allow a little for growth
 MOVE C'STATE TABLE OVERFLOW' TO PRT1
 PRINT
 ABEND 1234.
 MOVE DET1-25 TO TSA1 /* Move state number, name
 MOVE ZEROS TO TSA26-30-P /* Initialize counters
 SET TSA UP 30 /* Increment to next table entry
019 GOTO 010 /* Loop until table built
 SET TSA INITIAL /* Reset to beginning
030 GET INF ATEND 100 /* Read input records
 IF INF1-2 IS ONTABLE /* Got a hit on state?
 MOVE TBH3-25 TO PRT3 /* Also, show spelling
 ADD C'1' TO TBH26-30-P. /* Increment number of 'hits'
 MOVE INF1-2 TO PRT1
 PRINT
099 GOTO 030 /* Loop until input exhausted
100 SET TSA INITIAL /* Reset to beginning
120 IF TSA1-2 IS HIVALUES /* Are we at the end?
 GOTO EOJ. /* Yes
 IF TSA26-30-P EQ ZEROS /* Any hits?
 GOTO 150. /* Do not print entries with zeros
 MOVE TSA29-30-P TO PRT1 /* Truncate it
 MOVE C' FOR:' TO PRT6
 MOVE TSA3-25 TO PRT11 /* Show states w/ hits
 PRINT
150 SET TSA UP 30 /* Increment to next table entry
160 GOTO 120 /* Loop till done, then EOJ
9999END

3–168 VISION:Report Reference Guide

TCLOSE (VSAM ONLY)

TCLOSE (VSAM ONLY)
TCLOSE {INF|INA-INZ|DET|OFA-OFZ}

Term Description

TCLOSE Complete outstanding I/O operations and update catalog, but
does not disconnect the program from the data, formats the
last CA in the file to ensure that all of the data that has been
loaded is accessible. Writes SMF records if you are using SMF.

INA-INZ
DET
OFA-OFZ

This can be any VISION:Report input and/or output file name.
INF is the default.

Example

GET INF /* Get a record
MOVE C'NEWINFO' TO INF10 /* Change the record
REWRITE INF /* Rewrite
TCLOSE INF /* Commit to Disk

Statement Format 3–169

TITLE/TITLE2/TITLE n

TITLE/TITLE2/TITLE n
TITLE [n] 'title information [reserved words]'
TITLE2 'title information [reserved words]'

Term Description

TITLE
TITLE2
TITLE n

Specifies the title contents without regard to print line
positions.

n Title line number. This can be a number from 1 to 6 (default is
1).

title
information

Enclose in single quotation marks a character string for a
report title. (The length cannot exceed the length of the
PRTSIZE option.) All data between the enclosing quotation
marks is considered title information, so leading, embedded,
and trailing blanks may be specified. If you want a single
quotation mark, code two consecutive quotation marks.

TITLE, TITLE n, and TITLE2 replace HDA through HDF. HDC
through HDF areas and functions are unchanged, except when
the REPORT statement is used. In this case, REPORT controls
the HDC through HDF areas. You can control the format of
TITLE by submitting multiple TITLE lines whose contents are
put together from left to right in the sequence that they are
input. If the length of the composed TITLE line is less than
PRTSIZE, then that TITLE is centered by VISION:Report.

TITLE 'Example of first title'
TITLE 4 'Example of fourth title line'
TITLE 'This is George''s test'

3–170 VISION:Report Reference Guide

TITLE/TITLE2/TITLE n

Term Description

reserved
words

As with the HDR statement, you may code VISION:Report
supplied reserved word constants. These are replaced with the
appropriate value during execution. (VISION:Report supplies
some useful reserved words ($datanames$), see HDR for
reserved words $....$.) Page number and date are included in
your report title when space allows.

Additionally, you can specify valid equated data names or
field definitions enclosed in dollar signs (reserved header
names) to place user data fields in the header areas each time
page headers are printed.

The reserved words ($datanames$) are expanded or
compressed as needed to correspond to the data field length.

This feature is intended to simplify those cases where sections
of a report are identified by file data placed in the page titles.
This data should be moved from the record input area to a
WST work area so that it can be accessed at end of file time.

When the CHECKBREAKS statement is used, the $dataname$ is substituted
under the control of the BREAK spacing options and the BREAK level using the
following scheme:

■ Before totals line is printed:

- SB=E and level=1. Move $dataname$ to headers after headers are
printed.

- SB=E and level=final. Move spaces to headers.

- SB=E and other levels. Do not move $dataname$ to headers.

■ After totals line is printed:

- SB=E and level=1. Move $dataname$ to headers.

- SB=E and next higher level=final. Move spaces to headers.

- SB=E and other levels. Do not move $dataname$ to headers.

■ For all other BREAK spacing and level combinations:

- Move $dataname$ to headers.

Example

Here is a report in sequence by plant number that requires a page break
between plants with the plant number appearing in the title.

TITLE 'LIST OF EXEMPT EMPLOYEES AT PLANT $WST112-114$'

or

Statement Format 3–171

TRACE

TITLE 'LIST OF EXEMPT EMPLOYEES AT PLANT $PLANT-NR$'

If the first two plants in the file are 300 and 500, the first two section titles would
read:

LIST OF EXEMPT EMPLOYEES AT PLANT 300
LIST OF EXEMPT EMPLOYEES AT PLANT 500

TRACE
TRACE {ALL|LAST50|OFF}

The TRACE statement is declarative, not executable. Therefore, it may not be
the destination of a GOTO or PERFORM. Further, it defines what part of the
program is to be traced, not when it is to be traced.

Term Description

TRACE Tracks the processing flow of a program. It also assists in
troubleshooting a problem. (See the section Troubleshooting
and Memory Requirements in Chapter 5 for more information
concerning troubleshooting.)

ALL Causes each statement to be posted and printed whenever the
count specified by TRACECT has been reached (see OPTION)
or a PRINT, PRINTCHAR, PRINTHEX, or DOHEADERS
statement is executed.

Up to 10 trace entries can be printed on a single line. When the
trace line is printed, it consists of the internal VISION:Report
sequence number (the number in parentheses that is printed to
the left of each VISION:Report statement) and the four-
character code for the statement. Trace lines are interspersed
with any printing that is produced by the program.

LAST50 Causes a memory table of VISION:Report internal sequence
numbers, executed after the trace was requested or activated,
to be created and posted. No trace printing occurs on the
printer unless the program aborts due to a program check.

Up to and including the last 50 statement numbers executed
are printed on the printer if a program check occurs. The last
statement executed is identified. The last statement executed
normally is the statement causing the program check, if the
TRACE LAST50 statement was requested as the first statement
of the program.

OFF Turns off the trace routine. No further tracing occurs until a
TRACE ALL or TRACE LAST50 statement is encountered.

3–172 VISION:Report Reference Guide

TRACE

A TRACE record is created for each statement executed in a VISION:Report
program. Each record consists of the statement sequence number generated in a
program listing and 3- or 4-byte abbreviation of the statement name.

If you specify TRACECT=1 and TRACE ALL, the address of the statement in
memory is also listed in the trace record. Relations in compound IF statements
are individually traceable. The first relation is identified by the statement
sequence number and the remaining relations are specified by a number
followed by an asterisk, and refer to the ordinal position of the relation within
the statement.

Example

The following causes the entire program to be traced and the statements and
their mnemonics to be listed on the printer as they are executed. Execution time
will be increased.

 OPTION TRACECT=1
010 TRACE ALL
020 GET
030 ADD....
040 ADD....
050 MULT....
060 GO TO 020

The following causes the entire program to be traced and the last 50 statements
executed placed in an internal memory trace table. No printing of trace
statements occurs unless a program check occurs.

010 TRACE LAST50
020 GET
030 ADD....
nnn GO TO 020

The following traces statements 040 through 070 independent of the data.

OPTION TRACECT=1
010 GET
020 IF INF10-12 IS GT C'052'
030 TRACE ALL
040 MOVE.....
050 GO TO 010.
060 ADD...
070 TRACE OFF
080 GO TO 010

The following causes 020, 030, and 040 to be traced on the printer. No tracing
occurs after statement 040.

OPTION TRACECT=1
010 TRACE ALL
020 GET
030 ADD...
040 MULT....
050 TRACE OFF
nnn
900 END

Statement Format 3–173

TRACE

(22) IF (
(23) (
(24) (FLDB TMM FLDC AND /* 1
(25) FLDC = FLDC OR /* 2
(26) FLDH INCLUDES FLDI FLDJ REVERSE) OR /* 3
(27) (FLDE = FLDE OR /* 4
(28) FLDF = FLDF) AND /* 5
(29) (FLDE = FLDE OR /* 6
(30) FLDF = FLDF) AND /* 7
(31) FLDG = FLDG /* 8
(32)) AND FLDC = FLDC /* 9
(33))
(34) GOTO 999.

STMT 22 IF 00032050
STMT 3 * IF 00032090
STMT 9 * IF 00032154
STMT 34 GOTO 00032170

Recommendation:

TRACE LAST50 can be placed in all new programs when testing and debugging
programs. This facilitates debugging in case of program checks and does not
produce any extra paper, for example, unless the program aborts due to a
program check. TRACE ALL and TRACE LAST50 cause 6 bytes of memory per
statement extra to be used.

See the section Program Check Routine in Chapter 5 for a description of the
other debugging aids that automatically occur on a program check, regardless
of whether or not TRACE is being used.

Warning: The use of the TRACE statement causes the VISION:Report
generated program to require approximately two thirds more CPU time to
execute. It is not recommended that TRACE be left in for production jobs or
jobs that have a large volume of data to process. For these types of jobs, use
the SAMPLE and LIMITREADS statements along with one of the TRACE
statements to debug the program before the production job is run.

3–174 VISION:Report Reference Guide

TRAN

TRAN
TRAN flddef1 WITH flddef2 { flddef3 | X'...' }

Term Description

TRAN Translates a data field using a 256-byte substitution list. The
value of each byte in the source is added to the list address
and the byte at the resulting address is substituted for the
original byte value in the source.

flddef1 Source data to be translated.

WITH Required noise word.

flddef2 A 256-byte list used to provide the substituted byte values.

flddef3
X'...'

Optional. A 2- or a 4-byte binary field indicating the number of
bytes to be translated. If this operand is omitted, then the
length of the source field is used.

Example
EQU FILLER WST0
EQU FLDA (20) C'BLUEJAYS EAT PEANUTS'
EQU FLDB (256)
EQU FLDB
EQU FILLER (16) X'FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0'
EQU FILLER (16) X'EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0'
EQU FILLER (16) X'DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1D0'
EQU FILLER (16) X'CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0'
EQU FILLER (16) X'BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1B0'
EQU FILLER (16) X'AFAEADACABAAA9A8A7A6A5A4A3A2A1A0'
EQU FILLER (16) X'9F9E9D9C9B9A99989796959493929190'
EQU FILLER (16) X'8F8E8D8C8B8A89888786858483828180'
EQU FILLER (16) X'7F7E7D7C7B7A79787776757473727170'
EQU FILLER (16) X'6F6E6D6C6B6A69686766656463626160'
EQU FILLER (16) X'5F5E5D5C5B5A59585756555453525150'
EQU FILLER (16) X'4F4E4D4C4B4A49484746454443424140'
EQU FILLER (16) X'3F3E3D3C3B3A39383736353433323130'
EQU FILLER (16) X'2F2E2D2C2B2A29282726252423222120'
EQU FILLER (16) X'1F1E1D1C1B1A19181716151413121110'
EQU FILLER (16) X'0F0E0D0C0B0A09080706050403020100'
 TRAN FLDA WITH FLDB
 PRINTHEX FLDA

 WST1-20
 32132311B331B2332111
 DCBAEE7DFAECF8AEABCD
 01..05...10...15...20

Statement Format 3–175

TRNT

TRNT
TRNT flddef1 WITH flddef2 { flddef3 | X'...' }

Term Description

TRNT Translates and tests a data field using a 256-byte substitution
list. The value of each byte in the source is added to the list
address and the function byte at the resulting address is
inspected for a value of zero. The source field remains
unchanged. The bytes in the source field are examined one by
one from left to right until a non-zero function byte is
encountered or all the bytes in the source field have been
examined. The results of the operation are returned in
VAL224-B, VAL225-228-B and PTR. If no non-zero function
bytes were encountered, then VAL224-B and VAL225-228-B
are both zero and PTR is unchanged. If a non-zero function
byte is encountered, then it is returned in VAL224-B, the
number of bytes scanned is returned in VAL225-228-B and
PTR points to the byte in the source that resulted in the non-
zero function byte.

flddef1 Source data to be tested.

WITH Required noise word.

flddef2 A 256-byte list used to provide the substituted byte values.

flddef3
X'...'

Optional. A 2- or a 4-byte binary field indicating the number of
bytes to be translated and tested. If this operand is omitted,
then the length of the source field is used.

Example
* FOLLOWING EXAMPLE SHOULD STOP ON THE ‘E’ OF BLUEJAYS
EQU FILLER WST0
EQU FLDA (20) C'BLUEJAYS EAT PEANUTS'
EQU FLDB (256)
EQU FLDB /* 0 1 2 3 4 5 6 7 8 9 A B C D E F
EQU FILLER (16) X'00000000000000000000000000000000' /* 0
EQU FILLER (16) X'00000000000000000000000000000000' /* 1
EQU FILLER (16) X'00000000000000000000000000000000' /* 2
EQU FILLER (16) X'00000000000000000000000000000000' /* 3
EQU FILLER (16) X'00000000000000000000000000000000' /* 4
EQU FILLER (16) X'00000000000000000000000000000000' /* 5
EQU FILLER (16) X'00000000000000000000000000000000' /* 6
EQU FILLER (16) X'00000000000000000000000000000000' /* 7
EQU FILLER (16) X'00000000000000000000000000000000' /* 8
EQU FILLER (16) X'00000000000000000000000000000000' /* 9
EQU FILLER (16) X'00000000000000000000000000000000' /* A
EQU FILLER (16) X'00000000000000000000000000000000' /* B
EQU FILLER (16) X'00000000000100000000000000000000' /* C
EQU FILLER (16) X'00010000000200000000000000000000' /* D
EQU FILLER (16) X'00000000000000000000000000000000' /* E
EQU FILLER (16) X'00000000000000000000000000000000' /* F

3–176 VISION:Report Reference Guide

WHEN

TRNT FLDA WITH FLDB
 PRINTHEX FLDA
 PRINTHEX PTR1
 PRINTHEX VAL224-228

 WST1-20 BLUEJAYS EAT PEANUTS

 CDECDCEE4CCE4DCCDEEE

 23451182051307515432

 01..05...10...15...20

 PTR1-1 E

 C

 5

 01

 VAL224-228

 00000

 10004

 01..05

WHEN
WHEN flddef1 {INCLUDES|OMITS} {flddef2|C'xxx'|X'xxx'|SPACE|BLANK|NONSPACE|NONBLANK}
[flddef3] [REVERSE] {AND|OR}

Note: You can code this statement using IF in place of WHEN. You can also
insert the parameters of this statement in a compound IF statement.

Term Description

WHEN This statement performs a left-to-right scan (or optionally a
right-to-left scan) of the field specified. If the byte string
specified in flddef2 is present within the scanned field, a user
addressable pointer is set (special area PTR) to the leftmost
(rightmost if reversed) position of the found match. The
number of bytes scanned is returned in VAL225-228-B.
Processing continues with the next statement. If a match is not
found, processing is transferred to the statement following the
period. (See Rule K in General Rules.)

flddef1 Define the field to be scanned in the standard field definition
format. Variable field lengths may be any binary value in a 2-
or 4-byte field (see condition operand).

INCLUDES
OMITS

Determines whether or not to INCLUDES or OMITS based on
conditions.

Statement Format 3–177

WHEN

Term Description

condition Enter the search argument that establishes a true condition.

flddef2 Define the search argument in standard field
format. If the argument length is greater than the
variable scan field length, processing is transferred
to the next sentence.

C'xxxx' Maximum length for character literals is 40
bytes.

X'xxxx' Maximum length for hexadecimal literals is 36
bytes.

SPACE Same as literal X'40' one byte long.

BLANK Same as literal X'40' one byte long.

NONSPACE Any byte except X'40' one byte long.

NONBLANK Any byte except X'40' one byte long.

flddef3 Required for variable length scan fields. Flddef must be a
binary field of 2- or 4-bytes long that contains a value
indicating the length of data to be scanned.

Warning: If the length of this operand is in error and causes
VISION:Report to go beyond its area, region or partition,
program checks can occur. If the length in this operand is
smaller than the length implied in the condition, processing
is transferred to the statement following the period.

REVERSE Changes the normal direction of the scan from left-to-right to
right-to-left. REVERSE causes the scan to begin at the
rightmost position of the field and continue until the leftmost
position is reached, or a hit is found.

3–178 VISION:Report Reference Guide

WHEN

Term Description

AND, OR States the relationship of multiple WHEN and/or IF
statements.

IF statements may be interspersed with WHEN statements.

AND is the default. AND requires that all statements must
meet all conditions before the true statements are executed. If
any of the WHEN statements fail, a fall through occurs to the
next sentence. The following example illustrates the AND
logic.

140 WHEN INF1-80 INCLUDES C'OHIO' AND
150 IF BILL-AMOUNT IS GT ZERO
160 WHEN INF1-80 INCLUDES C'CURRENT'
170 MOVE INF1-80 TO OFA1-80
180 MOVE OFA1-80 TO PRT1
190 WRITE OFA
200 PRINT.
210 GO TO 10

If input positions INF1-80 contains OHIO and BILL-AMOUNT
is greater than zero, and INF1-80 contains CURRENT, the
balance of the sentence is executed. If INF1-80 does not
contain both OHIO and CURRENT or if BILL-AMOUNT is not
greater than zero, the relationship is false and control is
transferred to statement 210, the beginning of the next
sentence.

VAL225-228-B, after a successful hit, contains the number of
bytes scanned over until the leftmost position (rightmost
position when using the REVERSE option) of the successful hit
was found. If an unsuccessful hit or false condition is the
result, VAL225-228-B contains the number of bytes scanned
from the last successful WHEN hit, or binary zeros if no
previous hit was successful.

Statement Format 3–179

WHEN

Term Description

OR The use of the OR connective is valid only when any number
of WHEN...OR statements are followed by a WHEN statement.
This is necessary to indicate the end of the OR logic. Any
WHEN statements which follow it are not part of the preceding
OR logic. A found false condition causes the program to fall
through to the next statement which must be an IF or WHEN.
If the word OR is not included, a found true condition causes
fall through to the next statement while a found false condition
causes transfer to the next sentence.

040 IF INF1-7 IS NOT EQUAL TO C'NEW3380' OR
050 WHEN INF1-80 INCLUDES C'3380' OR
060 WHEN INF1-80 INCLUDES C'3375' OR
070 WHEN INF1-80 INCLUDES C'3350'
080 MOVE C'3380' TO PRT1-4
090 MOVE INF1-80 TO PRT10
100 PRINT.
110 MOVE INF1-80 TO OFA1-80

If input positions INF1-80 contains one of 3380, 3375, 3350, or if
INF1-7 does not equal NEW3380, then processing transfers to
statement 080 and the balance of the sentence is executed. If
INF1-7 does equal NEW3380 or INF1-80 does not contain 3380,
3375, 3350, the relationship is false and control is transferred to
statement 110, the beginning of the next sentence (the
statement following the period in 100 PRINT).

Examples
 Scan Field Search
 Statement From Thru Argument

WHEN INF1-80 INCLUDES C'CURRENT' INF1 INF80 CURRENT

WHEN INF1-80 INCLUDES C'X''180''' INF1 INF80 X'180'

WHEN DET1-80 INCLUDES SPACES DET1 DET80 (SPACES)

MOVE C'45' TO INF1-4-B
WHEN INF1-80 INCLUDES C'VARIABLE' INF1-4-B INF1 INF45 VARIABLE

WHEN INF1-80 INCLUDES C'LAST' REVERSE INF80 INF1 LAST

MOVE C'45' TO INF1-4-B
WHEN INF5-80 INCLUDES NONBLANK INF1-4-B INF5 INF49 NOT''

MOVE C'45' TO INF1-4-B
WHEN SAV12 INCLUDES X'FF' INF3-4-B REVERSE SAV56 SAV12 X'FF'

3–180 VISION:Report Reference Guide

WRITE

WRITE
WRITE {OFA-OFZ} [ONERROR seq-no]

Term Description

WRITE Writes the contents of the area specified to the appropriate
output file.

OFA-OFZ Write the contents of OFx area to the OFx file (for example,
write the contents of OFA area to OFA file).

ONERROR
seq-no

Valid for VSAM files only. The ONERROR operand causes
VISION:Report to automatically transfer to the statement
with the specified sequence number when a VSAM error
occurs. This allows you to examine the error codes RC/EC
and take appropriate action.

For VSAM, the length of the record must be specified in the 2-byte or 4-byte
length field preceding the I/O area. See the techniques shown in the section
VSAM Recommendations in Chapter 2.

The following lists the errors returned when the ONERROR operand is not
coded. These errors apply to KSDS files only.

 Error Word RC/EC
Error VAL253-255 VAL246-248

DUPLICATE RECORD 'DUP' X'0808'
RECORD OUT OF SEQUENCE 'SEQ' X'080C'

In VSE, after execution of the WRITE statement, the contents of the area OFA-
OFZ as applicable are no longer available to you except in the case of a VSAM
file. A form of PUT LOCATE processing is used to support the WRITE
statement. When the WRITE is issued, the pointer (to the appropriate place in
the output area where the data record is located or placed) is incremented to the
next output record position and/or a new block.

In MVS, after execution of the WRITE statement, the contents of the area OFA-
OFZ are still available to you. MOVE mode of processing is used to support the
WRITE statement. The file pointer always points to a work area that is the same
size as the largest record in the output file.

Statement Format 3–181

WRITE

Example
010 GET INF /* Get an input record
020 MOVE INF1-100 TO OFA1-100 /* Move input to your output file A
030 MOVE OFA1-100 TO OFB1-100 /* Move output area A to output area B
040 MOVE OFB1-100 TO OFC1-100 /* Move output area B to output area C
050 WRITE OFA /* Write OFA
060 WRITE OFB /* Write OFB
070 WRITE OFC /* Write OFC
080 GOTO 010 /* Go get next record

For VSE users, this example shows reading a file and making three copies of it
using output files A, B, and C. Notice that OFA1-100 is moved to OFB1-100 and
OFB1-100 is moved to OFC1-100. This can be done until either a WRITE OFA,
WRITE OFB or WRITE OFC statement is issued. If a WRITE OFA statement is
inserted as statement 021, the OFA area pointed to by statement 030 would not
contain the records that were read from the input file. It might be a previous
record (residue from a previously written block) or it might be garbage.

While the above is correct, it is not recommended that output areas be used as
the source of data for other purposes.

3–182 VISION:Report Reference Guide

XOR (Logical XOR)

XOR (Logical XOR)
XOR flddef1 WITH {flddef2 | C'xxx' | P'nnn' | X'...' | ZERO | BLANK | SPACE |
HIVALUE | LOVALUE } { flddef3 | X'...' }

Term Description

XOR Performs the logical XOR (Exclusive OR) of a data field. The
contents of a bit position in the source are set to one if the
corresponding bit positions in the operands are unlike;
otherwise the bit is set to zero. The resulting condition code is
returned in VAL223-B. If any bits in the source operand are
one following completion of the operation, then the condition
code is x'01'; otherwise, it is x'00'. In the case of a ZERO
figcon, if flddef1 is character, then a character zero x'F0' is
used, otherwise, a binary zero x'00' is used.

flddef1 Source data. This field may be changed because of the
operation.

WITH Required noise word.

flddef2
C'xxx'
P'nnn'
X'…'
ZERO
BLANK
SPACE
HIVALUE
LOVALUE

The second operand. This field is not changed.

flddef3
X'...'

Optional. A 2- or a 4-byte binary field indicating the number
of bytes to be XORd. If this operand is omitted, then the
length of the source field is used.

Example
EQU FILLER WST0
EQU FLDA (6) X'304050607080'
EQU FLDB (6) X'303030303030'
 XOR FLDA WITH FLDB
 PRINTHEX FLDA
 PRINTHEX VAL223

 WST1-6 -&
 07654B
 000000
 01..05.
 VAL223-223
 0
 1
 01

Statement Format 3–183

Chapter

4
Examples

Examples
This chapter contains VISION:Report examples for VSE and MVS. The
associated JCL is shown in the first few examples. Since the JCL is fairly
standard, sample JCL is only shown where it is significantly different. For MVS,
these examples are in the SAMPLIB PDS. For VSE they are located in the
VISION:Report library created at installation. In either case, the members are
named SAMP followed by a 2-digit number signifying the example number.

Some of the examples also use optional material, which is described in greater
detail in Chapter 6.

Example Type

Example 1 Load/Copy Tape to Disk

Example 2 Copy Card File to Two Tape Files, One Blocked and Standard
Label, One Unblocked and Unlabeled

Example 3 Variable Disk Input, Variable Tape Output

Example 4 Variable Record Output, Table Lookup, Indexing, PRINTHEX
Variable, PERFORM, HDR, OPTION STMTEND

Example 5 Create AR VSAM KSDS File Using Native VSAM from Sequential
Disk, SORT File in Building VSAM Key

Example 6 Concatenate Two Undefined Record Files into One Undefined
Output File

Example 7 File Maintenance or File Matching

Example 8 Table Lookup, Range Checking, Negative Field Testing

Example 9 Multiple Tables, Alphanumeric Checking

Example 10 Table Data for Repricing

Example 11 Accumulating Amounts in a Table, Print at EOJ

Examples 4–1

Examples

Example Type

Example 12 Dynamically Create and Sort a Table, Accumulate, and Print at
EOJ

Example 13 Table Load, TABLSORT, Print Various Sequences, Multiple HDR,
and Various OPTION Parameter Overrides

Example 14 Native VSAM Using GET, QUIKIPDS/QUIKINCL, REPORT,
SORT AREA with RELEASE/RETURN, DISPLAY, CALL to
QUIKDATE

Example 15 Additional Working Storage and QUIKVSAM, Using OPTION,
POINT, GET-UPD, ERASE, and MOVE with Quotes

Example 16 TABLSPEC, Indexing, Table ACCUM, BREAK, Summary Output
to Disk

Example 17 ACCUM Counts, Amounts Using CTR-NO, BREAK,
CHECKBREAKS, QUIKIPDS, LIMITREADS, PAGETOTALS,
REPORT, SORT, and Numerous IF Statements While Validating

Example 18 ACCUM Using CTR, BREAK, and CHECKBREAKS

Example 19 ACCUM Using CTA-CTC, BREAK, CHECKBREAKS, and
Summary Output, PUNCH

Example 20 ACCUM, BREAK, and CHECKBREAKS

Example 21 ACCUM, BREAK, and CHECKBREAKS with Total Time
Calculations, Multiple HDR

Example 22 Amortization Schedule, Calculations, No Input/Output Files,
LINECOUNT, Arithmetic Operations, Multiple HDR, PERFORM

Example 23 Match Records of a Transaction File Against a Master File and
Create a New Master file

Example 24 Print Report with OMIT, SORT AREA, SRTADJ, and RPTSPCE

Example 25 Print Report Summary

Example 26 SET PCC, MOVE VARIABLE LENGTH, EQU with Literals,
Negative Numbers, WHEN and WHEN/REVERSE, QUIKVSAM
with Read-Upd and Update

Example 27 Native VSAM using GET, SET PTA, PRINTHEX

Example 28 Native VSAM (RRDS) using GET and SETGENKEY

Example 29 Native VSAM (RRDS) using WRITE

Example 30 Native VSAM (KSDS, RRDS, ESDS) Using Random Access,
READ, ADDRECORD, REWRITE, DELETE

4–2 VISION:Report Reference Guide

JCL Examples

Example Type

Example 31 Native VSAM using GET, QUIKIPDS, WHEN,
WHEN/REVERSE, IF...NUMERIC, IF...ALPHA, Negative IF,
Multiple HDR with $names$

Example 32 Native VSAM (ESDS) with Alternate Index, Using
OPEN/CLOSE, GET, READ, SETGENKEY, REWRITE, SET PTA

Example 33 Native Variable Length VSAM (KSDS, ESDS) Using
OPEN/CLOSE, GET, WRITE, SET PTA, READ, SETGENKEY,
ONERROR

Example 34 QUIKVSAM (KSDS) with Alternate Index, Using OPTION,
OPEN/CLOSE, LOAD, READ, GET-UPD, READ-UPD, ADD,
GET, POINT, UPDATE, ERASE

Example 35 Troubleshooting Problems

Example 36 Mixture of CALLing QUIKVSAM and native VSAM, field names
greater than 14 characters, and $PAGE$ reserved word

Example 37 Nested IF, IF with parentheses, IF/ELSE/ENDIF, and bit
manipulation instructions such as AND, OR, XOR, TRAN, TRNT

Examples
38A and
38B

IF Statement with Test Under Mask Operands

JCL Examples
In all the examples that follow, the JCL is fairly standardized. The first few
examples show JCL for VSE and MVS, and their relationships to the
VISION:Report statements. In addition, usage of PROCs, as distributed in the
Release tape, are also shown. As the examples progress, the JCL is no longer
shown, as it would be similar to the first few examples. In some cases, the
VISION:Report statements show the I/O statements with an asterisk (*) in front;
the asterisks should be removed if the operating system is VSE.

VSE JCL Example
// JOB REPORT Card input, Tape output
// DLBL filename,'your.VISION.lib' (1)
// EXTENT ,volser (2)
// LIBDEF PHASE,SEARCH=(lib.sublib) (3)
// LIBDEF SOURCE,SEARCH=(lib.sublib) (4)

Statement (4) is required if the QUIKINCL exit is used. See Example 14.

Examples 4–3

JCL Examples

Use the following statements to standardize your JCL, where QJTEST has been
catalogued as a PROC with statements 1-4 as shown in the previous example.

// DLBL QJLIB,'your.VISION.proclib' PROC Library
// EXTENT ,volser
// LIBDEF PROC,SEARCH=QJLIB.PROC
// EXEC PROC=QJTEST

// TLBL OFA,'dataset.name' Output file OFA on I/O stmt
// ASSGN SYS010,580 Assign SYS nr. to phy.device as required
// EXEC QUKBJOB,SIZE=512K
INFCARD /* VSE I/O parameter stmt as necessary
OFATAPE800000800SSYS010 /* VSE I/O parameter stmt as necessary
... VISION:Report statements as required
9999END (Ensure the END statement is here)
.Card input
. goes here
/* /* VSE EOD data delimiter
/& VSE EOJ

A PROC, QJTEST, contained on the Distribution tape, assists in providing
general guidelines for the minimum JCL. It provides for library assignments,
allowing for future patch libraries, but ASSGN, TLBL, DLBL for input and
output files should be supplied according to the needs of your installation.

MVS JCL Example
//REPORT JOB (800-0000,0000),'CARD TO DISK'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K (1)
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib (2)
//SYSPRINT DD SYSOUT=* (3)
//QUIKIPDS DD DISP=SHR,DSN=your.VISION.source (4)*
//SYSUT2 DD DISP=(,CATLG),SPACE= etc.
// UNIT=SYSDA Output dataset, if required, for OFA
//SYSIN DD *
 VISION:Report statements as required
9999END /* Ensure the END statement is here
//SYSUT1 DD *
.Card input
. goes here
/*
//

*Statement is required if the QUIKIPDS exit is used. See Example 14.

A PROC, QJTEST, contained on the Release tape, assists in providing general
guidelines for the minimum JCL, as shown in statements 1-4 above. It can also
provide for STEPLIB statements, allowing for future patch libraries; the
necessary DD statements for input and output files will still need to be supplied
according to the needs of your installation. If the PROC is used, you may use a
statement similar to the following to override any JCL statements within the
PROC:

//RUNIT EXEC QJTEST
//QJ.SYSUT1 DD DSN=etc. For INF file
//QJ.SYSUT2 DD DSN=etc. For OFA file

4–4 VISION:Report Reference Guide

JCL Examples

Within the VISION:Report programs, there can be "commented-out" VSE I/O
statements (starts with an '*' in position 1). For VSE users, delete the '*' in
position 1 of the VSE I/O parameter statement, shifting all data on that
statement one byte to the left. In the first few examples, the true format of these
VSE I/O parameter statements is shown with the appropriate JCL. After that, it
appears in the VISION:Report program as a comment.

If you use a SORT in the VISION:Report program, SORT WORK JCL for
devices/data sets is required for intermediate storage, as well as any PHASE
library or LOADLIBs for the SORT program. Examples are:

VSE JCL with SORT Example:

// DLBL SORTWK1,'SORTWK1',0
// EXTENT SYS003,volser,etc.
// ASSGN SYS003,DISK,VOL=volser,SHR

MVS JCL with SORT Example:

//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(5,5))

Examples 4–5

Example 1

Example 1

Load/Copy Tape to Disk

This example shows how to read data records from tape and restore them to
disk. The records are written to disk in a blocked, fixed-format, with the record
size and block size the same as the tape. This example shows all the JCL and
VISION:Report statements necessary for completing this job in either a VSE or
MVS environment (see JCL Examples).

The Accounts Receivable file is copied from the Release tape of VISION:Report
and restored to disk.

VSE JCL Example
// JOB TPTODISK Tape to Disk - Restore AR file from tape
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// TLBL INF,'input.arfile'
// ASSGN SYS010,580 Assign SYS nr. to phy.device as required
// DLBL OFA,'ARFILE'
// EXTENT SYS006,volser,1,0,start track,number tracks
// ASSGN SYS006,DISK,VOL=SER=volser,SHR
// EXEC QUKBJOB
INFTAPE52800352SSYS010 /* This is what the VSE I/O parameter
OFADISC52800352SSYS006 /* statements should look like
... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//TPTODISK JOB (800-0000,0000),'TAPE TO DISK'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=input.arfile,etc.
// UNIT=TAPE INF
//SYSUT2 DD DISP=(,CATLG),SPACE=etc.
// DSN=ARFILE,
// DCB=(BLKSIZE=5280,LRECL=352,RECFM=FB),
// UNIT=SYSDA OFA
//SYSIN DD *
... VISION:Report statements as shown below
/*
//

4–6 VISION:Report Reference Guide

Example 1

VISION:Report Statements
**
* *
* SAMP01: COPY TAPE FILE TO DISK. COPY THE ACCOUNTS *
* RECEIVABLE (AR) FILE FROM RELEASE *
* DISTRIBUTION TAPE TO SEQUENTIAL DISK. *
* *
**
INFTAPE52800352SSYS010 / If VSE, remove * at position 1
OFADISC52800352SSYS006 / If VSE, remove * at position 1
010 GET
 MOVE INF1-352 TO OFA1
 WRITE OFA
 GOTO 010
9999 END

Examples 4–7

Example 2

Example 2

Copy Card File to Two Tape Files, One Blocked and Standard Label,
One Unblocked and Unlabeled

This example reads a card image file and creates two tape files from the same
card image file. One tape file is blocked 16000 bytes (blocking factor is 200) and
has standard labels; the other tape file is unblocked (blocking factor = 1) and is
unlabeled. This example shows all JCL and VISION:Report statements necessary
for completing this job in either a VSE or MVS environment.

The JCL demonstrates usage of the QJTEST PROC that was distributed with the
Release tape and aids in standardizing your VISION:Report jobstreams. Check
with the person that installed VISION:Report and verify that the PROC has been
modified and is available. In the event that the PROC is not available, review
JCL Examples for examples of JCL that does not use the QJTEST PROC.

VSE JCL Example
// JOB CDTOTAPE Card to 2 Tape files
// DLBL QJLIB,'your.VISION.proclib'PROC Library
// EXTENT ,volser
// LIBDEF PROC,SEARCH=QJLIB.PROC
// EXEC PROC=QJTEST
// TLBL OFB,'dataset.name1'
// ASSGN SYS010,580 Assign SYS nr. to phy.device for OFB
// ASSGN SYS011,581 Assign SYS nr. to phy.device for OFA
// EXEC QUKBJOB
INFCARD /* This is what the VSE I/O parameter
OFBTAPE 0080SSYS010 BS=16000 /* statements should look like
OFATAPE00800080NSYS011 /* VSE I/O parameter statement
... VISION:Report statements as shown below
.. Card input file here
..
/*
/&

4–8 VISION:Report Reference Guide

Example 2

MVS JCL Example
//CDTOTAPE JOB (800-0000,0000),'CARD TO 2 TAPES'
//RUNIT EXEC QJTEST Demonstrate usage of PROC
//QJ.SYSUT2 DD DISP=(,KEEP),LABEL=(,NL), OFA
// DSN=dataset.name2,
// DCB=(BLKSIZE=80,RECFM=F),
// UNIT=TAPE
//QJ.SYSUT3 DD DISP=(,CATLG),LABEL=(1,SL), OFB
// DSN=dataset.name1,
// DCB=(BLKSIZE=16000,LRECL=80,RECFM=FB),
// UNIT=TAPE
//QJ.SYSIN DD *
... VISION:Report statements as shown below
//QJ.SYSUT1 DD * INF
.. Card input file here
..
/*
//

VISION:Report Statements
**
* *
* SAMP02: COPY CARDS TO 2 TAPES, *
* ONE TAPE FILE IS BLOCKED, STANDARD LABEL(OFB).*
* ONE TAPE FILE IS UNBLOCKED, UNLABELLED (OFA). *
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1
OFBTAPE 0080SSYS011 BS=16000 / IF VSE, REMOVE * AT POSITION 1
OFATAPE00800080NSYS010 / IF VSE, REMOVE * AT POSITION 1

010 GET /* GET INPUT RECORD
 MOVE INF1-80 TO PRT1 /* MOVE TO PRINT LINE
 PRINT /* ECHO INPUT ON PRINTER
 MOVE INF1-80 TO OFA1 /* MOVE TO FIRST OUTPUT
 WRITE OFA /* AND WRITE IT OUT
* WRITE OUT SECOND FILE
 MOVE INF1-80 TO OFB1 /* MOVE TO SECOND OUTPUT
 WRITE OFB /* AND WRITE IT OUT
 GOTO 010 /* LOOP UNTIL DONE
99999END
01ALABAMA
02ALASKA
03ARIZONA
04ARKANSAS
05CALIFORNIA
06COLORADO
07CONNECTICUT
08DELAWARE
09DISTRICT OF COLUMBIA
10FLORIDA
11GEORGIA
12HAWAII
13IDAHO
14ILLINOIS
15INDIANA
16IOWA
17KANSAS
18KENTUCKY
19LOUISIANA
20MAINE
21MARYLAND

Examples 4–9

Example 2

22MASSACHUSETTS
23MICHIGAN
24MINNESOTA
25MISSISSIPPI
26MISSOURI
27MONTANA
28NEBRASKA
29NEVADA
30NEW HAMPSHIRE
31NEW JERSEY
32NEW MEXICO
33NEW YORK
34NORTH CAROLINA
35NORTH DAKOTA
36OHIO
37OKLAHOMA
38OREGON
39PENNSYLVANIA
40PUERTO RICO
41RHODE ISLAND
42SOUTH CAROLINA
43SOUTH DAKOTA
44TENNESSEE
45TEXAS
46UTAH
47VERMONT
48VIRGINIA
49WASHINGTON
50WEST VIRGINIA
51WISCONSIN
52WYOMING
/*

4–10 VISION:Report Reference Guide

Example 3

Example 3

Variable Disk Input, Variable Tape Output

This example reads a variable-blocked file from a disk device and copies all
records to tape output. In addition, it checks for the presence of the current-
days (MMDDYY) located anywhere from position 11 to the end of each record.

On the presence of a matching date, extend the length of the output record by 20
bytes and move the date into the first 6 bytes of the extension.

Disk input specifications: maximum block size=15000, maximum record
size=300, device=3380, and override the default ddname or file name to
CPVDATA. Tape output specifications: maximum block size=15000, maximum
record size=320, labels=standard.

VSE JCL Example
// JOB VARCOPY VARIABLE DISK IN, VARIABLE TAPE OUT
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL CPVDATA,'input.dataset.name'INF (label override)
// EXTENT SYS006,volser
// ASSGN SYS006,DISK,VOL=SER=volser,SHR
// ASSGN SYS010,580 Assign SYS nr. to phy.device as required
// TLBL OFA,'dataset.name' OFA
// EXEC QUKBJOB
INFDISV 0300SSYS006 BS=15000,LBL=CPVDATA /* VSE I/O parameter
OFATAPV 0320SSYS010 BS=15000 /* VSE I/O parameter
... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//VARCOPY JOB (800-0000,0000),'TAPE TO DISK'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//SYSPRINT DD SYSOUT=*
//CPVDATA DD DISP=SHR,DSN=input.dataset.name INF
//SYSUT2 DD DISP=(,CATLG),
// DSN=dataset.name,
// DCB=(BLKSIZE=15000,LRECL=320,RECFM=FB),
// UNIT=TAPE OFA
//SYSIN DD *
OPTION INFDD=CPVDATA /* Override DDNAME (SYSUT1) for INF
... VISION:Report statements as shown below
/*
//

Examples 4–11

Example 3

VISION:Report Statements
**
* *
* SAMP03: VARIABLE DISK INPUT, *
* VARIABLE TAPE OUTPUT. *
* *
* OVERRIDE STANDARD DDNAME FOR INF. *
* *
**
INFDISV 0300SSYS010 BS=15000,LBL=CPVDATA / VSE I/O PARAMETER
OFATAPV 0320SSYS011 BS=15000 / IF VSE, REMOVE * AT POSITION 1
 MOVE VAL5-6 TO WST1 /* INITIALIZE - MOVE MM TO WST1-2
 MOVE VAL8-9 TO WST3 /* MOVE DD TO WST3-4
 MOVE VAL11-12 TO WST5 /* MOVE YY TO WST5-6
100 GET /* READ A RECORD
 MOVE BLANKS TO OFA1-300 /* CLEAR OUTPUT RECORD BUFFER
 MOVE INF1 TO OFA1 /* MOVE RECORD TO O/P FILE
 SET PTA OFA1 /* SET INDEX TO BEGIN AT OFA1
 SET PTA UP OFA1-2-B /* INCREMENT TO END OF RECORD
 WHEN OFA11-300 INCLUDES WST1-6 /* SCAN OUPUT RECORD FOR DATE
 MOVE PTR1-6 TO PTA1 /* MOVE FOUND DATE TO RECORD END
 MOVE OFA1-2-B TO WST11-12-P /* MOVE VAR RECORD LENGTH TO WST
 ADD C'20' TO WST11-12-P /* ADD 20 TO RECORD LENGTH
 MOVE WST11-12-P TO OFA1-2-B. /* MOVE NEW LENGTH BACK TO RECORD
 WRITE OFA /* WRITE OUTPUT RECORD
 GOTO 100 /* GO READ NEXT RECORD
99999END
/*
/&
* $$ EOJ

4–12 VISION:Report Reference Guide

Example 4

Example 4

Variable Record Output, Table Lookup, Indexing, PRINTHEX
Variable, PERFORM, HDR, OPTION STMTEND

This example illustrates several VISION:Report features, and the printed output
displays how powerful and flexible a tool VISION:Report can be. Note the
following:

■ Blocked variable length records are created and written to the OFA file.
Maximum block size is 250 bytes, and maximum record size is 100 bytes.
The first record is 50 bytes long with each succeeding record being
incremented in length by 3 bytes up to a maximum of 100 bytes. The
variable record length is specified in positions 1-2 (in binary format) of the
output record. The decimal equivalent of the record length is also placed in
positions 11-13 in EBCDIC format.

■ PTA-PTB indexing is employed together with IF...ONTABLE to use the
decimal record-length digits in positions 11-13 as an argument in finding the
corresponding English-spelled name of each respective digit and placing it
into the variable output record.

■ The table area is hex printed in the standard PRINTHEX fixed-length format
(TSA0001-0084). The variable length records follow on the printer output,
each being hex printed using the PRINTHEX variable option.

VISION:Report Statements
OPTION STMTEND=80
**
* *
* SAMP04: VARIABLE RECORD DISK OUTPUT. *
* TABLE LOOKUP, INDEXING, PRINTHEX VARIABLE, *
* PERFORM/THRU, HDR OPTION STMTEND. *
* *
**
OFADISV02500100SSYS006 / IF VSE, REMOVE * AT POSITION 1
 HDR 1A 1 DEMO INCLUDING - VARIABLE OUTPUT - TABLE LOOKUP
 HDR 1B INDEX POINTER-PRINTHEX VARIABLE DATE: $IPLDAT$ PAGE: PG
 LINECOUNT 60 /* SET PRT LINES TO 60.
 TABLSPEC 0012 01 01 02 06 LIST /* TABLE SPECS - MAX ENTRIES=12
 /* ARGUMENT BEGINS AT 1, FOR LENGTH 2
 SET TSA INITIAL /* FUNCTION BEGINS AT 3, FOR LENGTH 9
 MOVE ZEROES TO WST1-3 /* VARIABLE VALUE INITIALIZED TO 0
 PRINTHEX TSA1-84 /* PRINTHEX TABLE AREA
100 MOVE C'050' TO WST5-7 /* BASE LENGTH OF VARIABLE RECORDS
 ADD WST1-3 TO WST5-7 /* INCREMENT RL WITH VAR. VALUE.
 MOVE LOVALUE TO OFA1-4 /* PLC BINARY ZEROES IN OFA AREA FOR VAR RLXX.
 MOVE WST5-7 TO OFA1-2-B /* MOVE VALUE TO OUTPUT AREA FOR REC LENGTH.
 MOVE WST5-7 TO OFA11 /* ALSO PLACE VALUE IN REC IN EBCDIC FORMAT.
 SET PTA OFA1 /* INITIAL PTA TO FRONT OF REC.
 SET PTA UP WST5-7 /* BUMP PTA UP BY VAR. VALUE, END OF RECORD.
 SET PTA DOWN 10 /* BACK OFF 10 BYTES FOR RIGHT SIDE OF RECORD.
 SET PTB WST7 /* INITIAL PTB TO LOW ORDER VALUE FIELD.
 PERFORM 300 THRU 400 /* DO TABLE LOOKUP AND PLACE ALPHA-SPELLED

Examples 4–13

Example 4

 PERFORM 300 THRU 400 /* NAMES OF THE DIGITS INTO OFA OUTPUT AREA.
 PERFORM 300 THRU 400 /* WHICH FORM THE VAR. VALUE & RECORD LENGTH.
 PRINTHEX OFA1 OFA1-2-B /* PRINTHEX RECORD FOR VARIABLE LENGTH.
 WRITE OFA /* WRITE THE OUTPUT RECORD.
 ADD C'3' TO WST1-3 /* INCREMENT THE VARIABLE VALUE BY 3.
 IF WST1-3 IS GT C'050' /* COMP VAR VALUE TO 50, FOR GR-THAN COMPARE
 GOTO EOJ. /* ON TRUE CONDITION, FORCE EOJ PROCESSING.
 GOTO 100 /* GO DO MORE OUTPUT PROCESSING.
300 IF PTB1 IS ONTABLE /* DO TABLE LOOKUP FOR DIGIT LOCATED AT PTB1.
 MOVE TBH2-7 TO PTA1 /* ON HIT, PLACE FUNCTION NAME IN PTA AREA.
 GOTO 350. /* GO AROUND NO-HIT PROCESSING.
 MOVE C'****' TO PTA1 /* NO-HIT ON TABLE, MOVE * TO PTA AREA.
350 SET PTB DOWN 1 /* DECREMENT PTB INDEX BY 1.
 SET PTA DOWN 10 /* DECREMENT PTA INDEX BY 10.
400 EXIT /* EXIT PERFORM PROCESSING HERE.
9999END /* END OF STATEMENTS, TABLE FOLLOWS.
0ZERO
1ONE
2TWO
3THREE
4FOUR
5FIVE
6SIX
7SEVEN
8EIGHT
9NINE

4–14 VISION:Report Reference Guide

Example 5

Example 5

Create AR VSAM KSDS File Using Native VSAM from Sequential Disk, Sort File in
Building VSAM Key

This example illustrates how to load a VSAM KSDS file from the sequential
accounts receivable file that was restored in Example 1. This example sorts the
AR file by account code and account number, which is used to build the VSAM
key. Prior to running the actual VISION:Report program, you will need to run
an IDCAMS step, which would look similar to the following:

DELETE (ARFILE.VSAM) CLUSTER
SET MAXCC=0
DEFINE CLUSTER (NAME (ARFILE.VSAM) -
 VOL (volser) -
 RECSZ(352 352) KEY (9,210)) -
 DATA (NAME (ARFILE.VSAM.DATA) -
 SPEED -
 TRK (3,1) FREESPACE (20,5)) -
INDEX (NAME (ARFILE.VSAM.INDEX))

VSE JCL Example
// JOB VSAMLOAD Load VSAM KSDS from SEQ AR File
// DLBL QJLIB,'your.VISION.proclib' PROC Library
// EXTENT ,volser
// LIBDEF PROC,SEARCH=QJLIB.PROC
// EXEC PROC=QJTEST
// DLBL OFA,'ARFILE.VSAM',,VSAM OFA
// DLBL INF,'ARFILE' INF
// EXTENT SYS006,volser
// ASSGN SYS006,DISK,VOL=SER=volser,SHR
// EXEC QUKBJOB
OFAKSDS 0352
INFDISC52800352SSYS006
... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//VSAMLOAD JOB (800-0000,0000),'LOAD VSAM FROM DISK'
//RUNIT EXEC QJTEST From PROC Lib
//QJ.SYSUT1 DD DISP=SHR,DSN=ARFILE INF
//QJ.SYSUT2 DD DISP=SHR,DSN=ARFILE.VSAM OFA
//QJ.SYSIN DD *
... VISION:Report statements as shown below
/*
//

Examples 4–15

Example 5

VISION:Report Statements
**
* *
* SAMP05: LOAD ACCOUNTS RECEIVABLE (AR) VSAM KSDS FILE *
* USING NATIVE VSAM FROM SEQUENTIAL DISK *
* CREATED IN ARBUILDT. SORT FILE FIRST *
* BY ACCOUNT CODE, THEN ACCOUNT NUMBER TO *
* BUILD VSAM KEY. *
* *
**
INFDISC52800352SSYS010 / If VSE, remove * at position 1
OFAKSDS 0352 / If VSE, remove * at position 1
 SORT FILE INF ON INF182-183 INF4-10

 OPEN OFA
 SET PTA OFA1
 SET PTA DOWN 2 /* Point to rec len fld
 MOVE P'352' TO PTA1-2-B
 MOVE SPACES TO OFA1-352
010 GET INF ATEND EOJ
 MOVE INF1-210 TO OFA1-210
* BUILD KEY WITH NEXT 2 INSTRUCTIONS
 MOVE INF182-183 TO OFA211-212 /* Account-code
 MOVE INF4-10 TO OFA213-219 /* Acct
 MOVE INF220-352 TO OFA220-352 /* Rest of it

 MOVE OFA211-219 TO PRT1
 MOVE INF85-109 TO PRT30
 PRINT
 WRITE OFA ONERROR 200
 GOTO 010

200 MOVE C'==== ERROR DURING LOADING' TO PRT20
 MOVE OFA211-219 TO PRT1
 PRINT
 GOTO 010
9999 END

4–16 VISION:Report Reference Guide

Example 6

Example 6

Concatenate Two Undefined Record Files into One Undefined Output File

This example copies the contents of two undefined-length format tape files into
one tape file.

Maximum record length for the input files is 3000 bytes and 3500 bytes,
respectively. Maximum record length for the output file is 3500 bytes.

VSE JCL Example
// JOB MERGE Merge undefined tapes into one tape
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// TLBL INF,'undef.in1' INF
// TLBL DET,'undef.in2' DET
// TLBL OFA,'undef.out' OFA
// ASSGN SYS010,580 Assign SYS nr. for INF
// ASSGN SYS011,581 Assign SYS nr. for DET
// ASSGN SYS012,582 Assign SYS nr. for OFA
// EXEC QUKBJOB
... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//MERGE JOB (800-0000,0000),'MERGE UNDEFINED TAPES'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=undef.in1 INF
//SYSDET DD DISP=SHR,DSN=undef.in2 DET
//SYSUT2 DD DISP=(,CATLG),
// DSN=undef.out,
// DCB=(BLKSIZE=3500,LRECL=3500,RECFM=U),
// UNIT=TAPE OFA
//SYSIN DD *
... VISION:Report statements as shown below
/*
//

Examples 4–17

Example 6

VISION:Report Statements
**
* *
* SAMP06: COPY THE CONTENTS OF 2 UNDEFINED-LENGTH *
* FORMAT TAPE FILES INTO ONE UNDEFINED TAPE *
* FILE. *
* *
**
INFTAPU30003000SSYS010 / If VSE, remove * at position 1
DETTAPU35003500SSYS011 / If VSE, remove * at position 1
OFATAPU35003500SSYS012 / If VSE, remove * at position 1

010 GET /* Read data from file 1.
 IF INF1-10 IS HIVALUE /* Test for EOF.
 GO TO 100. /* Branch to 100 on EOF.
 MOVE INF1-3000 TO OFA1 /* Move max RL to output.
 WRITE OFA /* Write output.
 GO TO 010 /* Go read more data-file 1.

100 GET DET /* Read data from file 2.
 IF DET1-10 IS HIVALUE /* Test for EOF on file 2.
 GO TO EOJ. /* Force EOJ on eof.
 MOVE DET1-3500 TO OFA1 /* Move max RL to output.
 WRITE OFA /* Write output.
 GO TO 100 /* Go read more data-file 2.
9999END

VISION:Report returns the length of each undefined record to VAL-1-4-P on
input files. On output files, you must place the length of the record to be written
in VAL1-4-P. Since the above example copies the undefined files to output
unchanged, the length is contained in VAL1-4-P, but is not referenced.

4–18 VISION:Report Reference Guide

Example 7

Example 7

File Maintenance or File Matching

This example shows you how to:

■ Prepare a program which posts maintenance transactions to a master file.
The files are 80-position records with the key in positions 1-4. Assume the
master is a personnel or payroll type file.

■ Allow for change or update type transactions; therefore, each transaction
should match the master. Multiple matching transactions are allowable.

■ Recreate or copy the master to a new area or disk extent. The master is on
sequential disk. The transactions are on disk.

The flow of the problem looks like this:

Examples 4–19

Example 7

VISION:Report Statements
**
* *
* SAMP07: MATCH MASTER AND TRANSACTION INPUT FILES *
* CREATE NEW MASTER FILE. *
* ALLOWS FOR UPDATING OR CHANGING RECORDS, *
* AS WELL AS ADDING NEW RECORDS. *
* *
**
INFDISC16000080SSYS005 / IF VSE, REMOVE * AT POSITION 1
DETDISC32000080SSYS010 / IF VSE, REMOVE * AT POSITION 1
OFADISC16000080SSYS006 / IF VSE, REMOVE * AT POSITION 1

EQU TRANS-KEY DET1-9
EQU MSTR-KEY INF1-9
EQU OLD-MASTER INF1-80
EQU NEW-MASTER OFA1-80

 GET INF /* READ A MASTER.
030 GET DET /* READ A TRANSACTION.
100 IF TRANS-KEY IS NOT EQ MSTR-KEY
 GOTO 160.
 IF MSTR-KEY EQ HIVALUE AND /* ENSURE BOTH NOT AT EOF
 IF TRANS-KEY EQ HIVALUE
 GO TO EOJ. /* YES, GO TO EOJ.
 MOVE DET1-80 TO INF1-80 /* POST TRANS TO MASTER.
 GO TO 030 /* GO READ TRANS & RETURN TO MATCHING

160 IF TRANS-KEY IS GT MSTR-KEY /* IF TRANS GT MASTER
 MOVE OLD-MASTER TO NEW-MASTER /* MOVE MASTER TO OUTPUT.
 WRITE OFA /* WRITE IT OUT.
 GET INF /* GET THE NEXT MASTER.
 GO TO 100. /* GO TO THE MATCHING CODE.
200 /* ERROR - NO MATCHING KEY
 MOVE DET1-80 TO PRT1 /* ERROR SOMEWHERE
 PRINT
 GO TO 030 /* FETCH NEXT TRANSACTION.
9999END

4–20 VISION:Report Reference Guide

Example 8

Example 8

Table Lookup, Range Checking, Negative Field Testing

Given a transaction file containing 80-byte fixed-blocked records, this example
completes the following edits:

■ match the transaction code to a table entry

■ verify that the dollar amount field is within the allowable low and high
range limits of the matching table entry

■ check the dollar amount field to ensure it is not negative

Any transactions not passing the above edits are printed along with an
appropriate message identifying the test where the edit failed.

VISION:Report Statements
**
* *
* SAMP08: EDIT TRANSACTION FILE. *
* MATCH AGAINST TABLE ENTRY. *
* *
**
INFTAPE16000080NSYS000 / IF VSE, REMOVE * AT POSITION 1

EQU ARG-CODE INF5-6
EQU $AMT INF22-27
EQU LO-RANGE FUN1-6
EQU HI-RANGE FUN7-12
 TABLSPEC 0050 01 02 03 12 LIST
040 GET /* READ A RECORD.
 IF ARG-CODE IS ONTABLE /* DO TABLE LOOKUP.
 GOTO 100. /* IF ONTABLE, BR TO 100.
 MOVE C'INVALID TRANS. CODE' TO PRT45 /* ERROR MESSAGE.
075 MOVE INF1-40 TO PRT1 /* RECORD TO PRINT.
 PRINT /* PRINT ERROR RECORD.
 GOTO 040 /* GO GET MORE RECORDS.
100 IF $AMT IS LT LO-RANGE OR /* CK $AMT FOR LESS-THAN LO-RAN
 IF $AMT IS GT HI-RANGE /* OR GREATER-THAN HI-RANGE.
 MOVE C'INVALID $AMOUNT' TO PRT45 /* ERROR, FILE/TABLE AMTS NOT =
 GOTO 075. /* GO PRINT RECORD.
 MOVE $AMT TO WST1-4-P /* MOVE AMT TO PACKED FLD.
 IF WST1-4-P IS LT P'0' /* CK FOR LESS THAN ZERO (NEGAT
 MOVE C'$ AMOUNT IS CREDIT' TO PRT45 /* IF SO, ERROR.
 GOTO 075. /* GO TO PRINT RECORD.
 MOVE C'** GOOD RECORD **' TO PRT45 /* DISPLAY GOOD RECORD MESSAGE
 MOVE INF1-40 TO PRT1 /* RECORD TO PRINT.
 PRINT /* PRINT ERROR RECORD.
 GOTO 040 /* GO READ MORE RECORDS.
99999999END

Examples 4–21

Example 8

01100000100000
02010000010000
M3001000001000
04000100000100
05000010000010
05000001000001
06200000200000
07020000020000
08002000002000
09000200000200
10000020000020
11000002000002
12300000300000
/*

4–22 VISION:Report Reference Guide

Example 9

Example 9

Multiple Tables, Alphanumeric Checking

Presume in an application the account number, department, and product codes
require verification. This can be done by entering all such valid codes into a
VISION:Report table and preceding each with a unique character. In this
example, each account is preceded with an A, department with a D, and
product with a P.

This example also verifies that a non-zero or non-blank product field has a
fabrication code containing alphabetic characters and that the earnings and
standard fields are numeric. This example prints all records not passing these
edit checks along with the reason for failure.

VISION:Report Statements
**
* *
* SAMP09: VERIFY ACCOUNT NUMBER, DEPARTMENT AND PRODUCT *
* CODE AGAINST A TABLE. *
* DO VARIOUS VALIDATION SUCH AS NUMERIC CHECKING *
* *
**
OPTION LISTABL=YES
INFTAPE16000080SSYS004 / IF VSE, REMOVE * AT POSITION 1

EQU ACCT-NR INF11-14 /* EQUATE
EQU DEPT-NR INF15-17 /* DATA
EQU PROD-NR INF18-23 /* NAMES
EQU FAB-CODE INF32-33 /* TO
EQU REG-EARN INF41-46 /* INF
EQU STD-EARN INF55-60 /* AREAS.
 HDR 1A 1 $IPLDAT$ DAILY TRANSACTIONS EDIT PAGE PG
 TABLSPEC 0600 01 07
 MOVE SPACES TO WST1-30 /* BLANK WORK-STORAGE AREA.
 MOVE C'A' TO WST1 /* PRECEDE EACH ACCT WITH 'A'.
 MOVE C'D' TO WST11 /* PRECEDE EACH DEPT WITH 'D'.
 MOVE C'P' TO WST21 /* PRECEDE EACH PROD WITH 'P'.

100 GET /* READ A RECORD.
 MOVE ACCT-NR TO WST2 /* MOVE ACCT BEHIND A.
 MOVE DEPT-NR TO WST12 /* MOVE DEPT BEHIND D.
 MOVE PROD-NR TO WST22 /* MOVE PROD BEHIND P.
 SET TSA INITIAL /* ENSURE IT'S CLEARED
 MOVE C'*** WST1-27' TO PRT28
 MOVE WST1-27 TO PRT1
 PRINT
 IF WST1-7 IS ONTABLE /* SEARCH TABLE FOR ACCT-NR.
 GOTO 200. /* FOUND, BR TO 200.
 MOVE C'ACCT-NR NOT ONTABLE' TO PRT55 /* NOT FOUND.
 GOTO 500 /* PRINT RECORD AND ERROR CONDITION.
200 IF WST11-17 IS ONTABLE /* SEARCH TABLE FOR DEPT-NR.
 GOTO 250. /* FOUND, BR TO 250.
 MOVE C'DEPT-NR NOT ONTABLE' TO PRT55 /* NOT FOUND.
 GOTO 500 /* PRINT RECORD AND ERROR CONDITION.
250 IF WST21-27 IS ONTABLE /* SEARCH TABLE FOR PROD-NR.

Examples 4–23

Example 9

 GOTO 300.
 MOVE C'PROD-NR NOT ONTABLE' TO PRT55 /* NOT FOUND.<F255D>
 GOTO 500 /* PRINT RECORD AND ERROR CONDITION.
300 IF PROD-NR IS BLANK OR /* BYPASS FAB-CODE CHK IF BLANK.
 IF PROD-NR IS ZERO /* OR ZERO PROD-NR.
 GOTO 400.
 IF FAB-CODE IS ALPHA /* OK FOR ALPHA CHAR.
 GOTO 400. /* IF SO, GO TO 400.
 MOVE C'FAB-CODE NOT VALID' TO PRT55
 GOTO 500
400 IF REG-EARN IS NUMERIC /* CHK FOR NUMERICS.
 GOTO 450.
 MOVE C'REG-EARN NOT NUMERIC' TO PRT55
 GOTO 500
450 IF STD-EARN IS NUMERIC /* CHK FOR NUMERICS.
 GOTO 100.
 MOVE C'STD-EARN NOT NUMERIC' TO PRT55
500 MOVE INF1-50 TO PRT1 /* MOVE RECORD TO PRINT.
 PRINT DOUBLESPACED /* PRINT IT.
 GOTO 100
9999END /* END QJ, TABLE FOLLOWS.
A1000
A1020
A1024
D001
D002
D005
D100
D104
D999
P000001
P000002
P000005
P100215
P100302
P999999
/*

4–24 VISION:Report Reference Guide

Example 10

Example 10

Table Data for Repricing

A master file used for pricing of invoices needs to be updated to incorporate
new selling prices. The price increases are to be applied by commodity group
varying from 1.0 percent to 12.5 percent of the current price.

In this example:

1. Place the approximately 75 commodity codes and their respective
percentage of increases into a table.

2. Print only the items which change, showing the old and new selling
price.

3. Write a new master file of changed and unchanged records.

VISION:Report Statements
**
* *
* SAMP10: UPDATE MASTER FILE ON PRICING OF INVOICES. *
* USE TABLE. *
* *
**
INFTAPE20000200SSYS006 / If VSE, remove * at position 1
OFATAPE20000200SSYS005 / If VSE, remove * at position 1

EQU SELL-PRICE INF51-55-P
EQU COMM-CODE INF16-19
EQU ITEM-NR INF2-8
 HDR 1A 1 $IPLDAT$ COMMODITY PRICE INCREASE PAGE PG
 HDR 2A 0 ITEM COMM OLD PRICE NEW PRICE %
 TABLSPEC 0100 01 04 05 03 LIST

100 GET /* Get a record.
 IF COMM-CODE IS NOT ONTABLE /* Search table for comm code.
 MOVE INF1-40 TO PRT1-40
 MOVE C'NOT ON TABLE' TO PRT45
 GOTO 270. /* Not found; write out unchg record
 MOVE ITEM-NR TO PRT4
 MOVE COMM-CODE TO PRT16
 MOVE SELL-PRICE TO PRT25 2C
 MOVE TBH5-7 TO PRT58 3C
 MULT SELL-PRICE 2D BY TBH5-7 3D GIVING WST1-4-P 2DR /* Calc. incr.
 ADD WST1-4-P TO SELL-PRICE /* Add to old cost.
 MOVE SELL-PRICE TO PRT40 2C /* Move new cost to print.
270 PRINT
 MOVE INF1-80 TO OFA1 /* Move input to output.
 WRITE OFA /* Write output.
 GOTO 100 /* Go read more records.
9999END /* Statements end, table follows.

Examples 4–25

Example 10

01CA005
02CA010
03CA015
04CA020
05CA025
06CA030
07CA035
08CA040
09CA045
10CA050
11CA055
12CA060
13CA065
14CA070
15CA075
16CA080
17CA085
18CA090
19CA095
20CA100
21CA105
22CA110
23CA115
24CA120
25CA125
26CB005
27CB010
28CB015
29CB020
30CB025
31CB030
32CB035
33CB040
34CB045
35CB050
36CB055
37CB060
38CB065
39CB070
40CB075
41CB080
42CB085
43CB090
44CB095
45CB100
46CB105
47CB110
48CB115
49CB120
50CB125
51CC005
52CC010
53CC015
54CC020
55CC025
56CC030
57CC035
58CC040
59CC045
60CC050
61CC055
62CC060
63CC065
64CC070
65CC075

4–26 VISION:Report Reference Guide

Example 11

66CC080
67CC085
68CC090
69CC095
70CC100
71CC105
72CC110
73CC115
74CC120
75CC125
/*

Example 11

Accumulating Amounts in a Table, Print at EOJ

Using a general ledger transaction file, accumulate and print dollar amounts for
each account number matching a table entry.

VISION:Report Statements
**
* *
* SAMP11: ACCUMULATE AMOUNTS IN A TABLE FROM A *
* GENERAL LEDGER TRANSACTION FILE. *
* PRINT DOLLAR AMOUNTS AT EOJ. *
* *
**
INFTAPE40000500SSYS043 / IF VSE, REMOVE * AT POSITION 1

 TABLSPEC 0200 01 04 05 08 LIST /* MAX 20, ACCT=1-4,AMT=5-12.
 HDR 1A 1 $IPLDAT$ G/L ACCOUNT SUMMARY
 HDR 2A 0 ACCT $AMOUNT

 ATEND 200 /* AT END-OF-FILE ON INF, BRANCH TO 200 FOR
 * DUMPING AND PRINTING OF ACCUMULATED TABLE
 * ENTRIES. WE WILL FIRST LOOP THROUGH TABLE,
 * ZAPPING ZEROES INTO FUNCTION POSITIONS 5-12
 * SO WE CAN USE THEM AS COUNTERS.
 SET TSA INITIAL /* SET INDEX TABLE POINTER AT START.
050 IF TSA1 IS HIVALUE /* TEST FOR END OF TABLE (X'FF').
 GOTO 100. /* EQ, BRANCH TO 100.
 MOVE ZEROES TO TSA5-12-P /* MOVE ZEROES TO ACCT ENTRY FUNCTION.
 SET TSA UP 12 /* INCREMENT INDEX TO NEXT ENTRY.
 GOTO 050 /* GO TO START OF LOOP.

100 GET /* READ A G/L RECORD.
 IF INF5-8 IS ONTABLE /* SEARCH A TABLE FOR HIT ON ACCT NR.
 ADD INF21-28-P TO TBH5-12-P. /* FOUND, ADD $ AMT TO TABLE CTR
 GOTO 100 /* GO READ NEXT RECORD.
 *
 * EOF PROCESSING FOLLOWS
200 SET TSA INITIAL /* POINT INDEX AT TABLE START.
210 IF TSA1 IS HIVALUE /* TEST FOR END OF TABLE.
 GOTO EOJ. /* EQ, GO FORCE EOJ.
 MOVE TSA1-4 TO PRT13 /* MOVE ACCT-NR TO PRINT.
 MOVE TSA5-12-P TO PRT20 2C /* PRINT 2 DEC & COMMAS.

Examples 4–27

Example 11

 PRINT DOUBLESPACED /* PRINT TABLE ENTRY.
 SET TSA UP 12 /* INCREMENT INDEX TO NEXT TABLE ENTRY.
 GOTO 210 /* GO PROCESS NEXT TABLE ENTRY.
9999END
A005
A010 €
A015
A020
A025 &
A030 -
A035 ø
A040 Ø
A045 °
A050
A055
A060 €
A065
A070
A075 &
A080 -
A085 ø
A090 Ø
A095 °
A100
/*

4–28 VISION:Report Reference Guide

Example 12

Example 12

Dynamically Create and Sort a Table, Accumulate, and Print at EOJ

Using the same general ledger transaction file which was referenced in the
previous example, change the accumulation and reporting requirements.

Instead of working with only accounts matching the table, accumulate and print
all accounts that are in the file. No table entries are present in the job stream; the
account number entries are added to the table on the first occurrence found.

VISION:Report Statements
**
* *
* SAMP12: DYNAMICALLY CREATE AND SORT A TABLE. *
* ACCUMULATE AND PRINT ACCOUNTS IN TABLE. *
* *
**
INFDISC40000500SSYS043 / If VSE, remove * at position 1

 TABLSPEC 0200 01 04 05 08 /* Max 200 entries, acct=1-4,amt=5-12
 HDR 1A 1 $IPLDAT$ G/L ACCOUNT SUMMARY
 HDR 2A 0 ACCT $AMOUNT$

 ATEND 200 /* At end-of-file on INF, branch to
 * 200 for dumping and printing of
 * accumulated table entries.
100 GET /* Read a G/L record.
110 IF INF5-8 IS ONTABLE /* Search table for hit on acct-nr.
 ADD INF21-28-P TO TBH5-12-P /* Found, add $ amt to table ctr
 GOTO 100. /* Go read next record.

 * AT THIS POINT, ACCT-NR IS NOT ONTABLE, SO WE WILL PROCEED TO ADD
 * THIS ENTRY TO THE END OF THE TABLE, AND RE-SORT THE TABLE BY ARG.

 SET TSA INITIAL /* Set index table pointer at start.
150 IF TSA1 IS HIVALUE /* Test for end of table (X'FF').
 GOTO 170. /* Eq. branch to 170.
 SET TSA UP 12 /* Bump index to next entry.
 GOTO 150 /* Go to start of loop.
170 MOVE INF5-8 TO TSA1-4 /* Move acct-nr from INF to table arg1-4.
 MOVE ZEROES TO TSA5-12-P /* Move 0 to table function, pos5-12.
 SET TSA INITIAL /* Set index table pointer at start.

 CALL TABLSORT TSA1 C'12' C'01' C'04' C'A' C'C'
 GOTO 110 /* Go do search & add to table.

 * EOF PROCESSING FOLLOWS
200 SET TSA INITIAL /* Point index at table start.
210 IF TSA1 IS HIVALUE /* Test for end of table.
 GOTO EOJ. /* Eq, go force EOJ.
 MOVE TSA1-4 TO PRT4 /* Move acct-nr to print.
 MOVE TSA5-12-P TO PRT12 2C /* Move accum $ to print 2 dec & commas
 PRINT DOUBLESPACED /* Print table entry.
 SET TSA UP 12 /* Increment index to next table entry
 GOTO 210 /* Go process next table entry.
9999END

Examples 4–29

Example 13

Include some kind of checking logic to diagnose when the allocated table space
has been exhausted. You should count and compare the number of table entries
being added to a value equal to the number specified in the TABLSPEC
statement.

Example 13

Table Load, TABLSORT, Print Various Sequences, Multiple HDR, and
Various OPTION Parameter Overrides

The statements starting with statement 050 read the input data, move the input
data to an edited format in the table, extract the first and last names of the
employee into separate fields, and print the table entry.

When end-of-file is reached, control goes to statement 300. The data in the table
is then alternately sorted (in memory by TABLSORT) and printed by last name
sequence, first name sequence, gross descending sequence, and record-number
sequence. The GO TO EOJ statement instructs VISION:Report to do end-of-job
processing and termination. Starting with Statement 700, VISION:Report
browses through the table and prints the table entries.

The OPTION SEQCHK=NO does not require sequence numbers, except on
statements which are used for transfer points and also allows statements to be
indented. Most likely, this is the default. The OPTION STMTEND=80 allows a
VISION:Report input statement to require the entire 80 bytes on one line.
Frequently, when HDR statements are used, this OPTION is specified. To allow
for sequence numbers in positions 73-80 of input statements, STMTEND=71
should be specified or generated as the default. Using this option would allow a
continuation in position 72, with sequence numbers in 73-80. To find out what
default options have been specified, run a VISION:Report program without any
OPTION statements, except LISTOPT=YES. Specifying this will print all the
default options generated.

VISION:Report Statements
OPTION BWZ=YES,SEQCHK=NO,STMTEND=80,WSTSIZE=2000
**
* *
* SAMP13: PAYROLL DEMO FILE IS USED AS DATA TO LOAD *
* A TABLE, THEN SORT THE TABLE, AND PRINT *
* IN VARIOUS SEQUENCES, SUCH AS LAST NAME, *
* FIRST NAME, GROSS DESCENDING SEQUENCE, AND *
* RECORD NUMBER SEQUENCE. *
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1

 HDR 1A 1TABLE LOAD SEQUENCE PAGEPG

4–30 VISION:Report Reference Guide

Example 13

 HDR 2A 0PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D G
 HDR 2B ROSS REC-NR
 TRACE LAST50 /* SET TRACE FOR LAST 50 STMTS IF JOB BOMBS.
 TABLSPEC 0200 01 02 03 78 /* ALLOCATE 200 ENTRIES @ 80-BYTES EACH.
 SET TSA INITIAL /* POINT TO 1ST TABLE ENTRY.
 MOVE SPACES TO WST1-50 /* CLEAR WST TO BLANKS FOR LATER USE.
 MOVE ZEROES TO WST61-63 /* ZERO AREA FOR COUNTER USE.
 ATEND 300 /* AT EOF GO TO TABLE PROCESSING.

050 GET /* READ A RECORD.
 MOVE SPACES TO TSA1-80 /* CLEAR NEXT TABLE ENTRY TO BLANKS.
 MOVE INF1-2 TO TSA3 /* MOVE PLANT TO TABLE
 MOVE INF3-5 TO TSA10-12 /* DEPT
 MOVE INF6-9 TO TSA19 /* EMP-NR.
 MOVE INF10-25 TO WST1 /* MOVE NAME TO WORK AREA.
 WHEN WST1-16 INCLUDES C',' /* NOW SCAN FOR COMMA.
 MOVE PTR2-13 TO TSA44 /* MOVE NAME BEHIND COMMA TO TABLE.
 MOVE SPACES TO PTR1-15 /* BLANK COMMA & NAME FOLLOWING IT.<F255D>
 MOVE WST1-12 TO TSA29. /* MOVE LAST NAME TO TABLE.<P9>
 MOVE INF26-32 TO TSA62-68 /* MOVE Y-T-D GROSS TO TABLE.<P9>
 ADD C'1' TO WST61-63 /* INCREMENT RECORD NUMBER BY 1.<F255D>
 MOVE WST61-63 TO TSA77 /* MOVE REC-NR TABLE.
 PERFORM 800 THRU 899 /* PRINT THE TABLE ENTRY.
 SET TSA UP 80 /* INCREMENT TABLE INDEX POINTER BY 80.
 GOTO 050 /* GO READ NEXT RECORD.

300 MOVE C'END OF INF/TABLE LOAD' TO PRT1 /*
 PRINT DOUBLESPACED /* PRINT TABLE-LOADED MESSAGE.
 SET TSA INITIAL /* INITIALIZED TABLE INDEX POINTER TO START.
315 CALL TABLSORT TSA1 C'80' C'29' C'12' C'A' C'C'
 /* SORT TABLE BY LAST NAME.
 MOVE SPACES TO HDA1 /*
 MOVE C'LAST NAME SEQUENCE ' TO HDA1 /*
 PERFORM 700 THRU 799 /* DUMP & PRINT SORTED TABLE.
 SET TSA INITIAL /* INITIALIZE TABLE INDEX POINT TO START.
330 CALL TABLSORT TSA1 C'80' C'44' C'12' C'A' C'C'
 /* SORT TABLE BY FIRST NAME.
 MOVE SPACES TO HDA1 /*
 MOVE C'FIRST NAME SEQUENCE ' TO HDA1 /*
 PERFORM 700 THRU 799 /* DUMP & PRINT SORTED TABLE.
 SET TSA INITIAL /* INITIALIZE TABLE INDEX POINTER TO START.
350 CALL TABLSORT TSA1 C'80' C'62' C'07' C'D' C'C'
 /* SORT GROSS / DESCENDING.
 MOVE SPACES TO HDA1 /*
 MOVE C'GROSS DESC. SEQUENCE ' TO HDA1 /*
 PERFORM 700 THRU 799 /* DUMP & PRINT SORTED TABLE.
 SET TSA INITIAL /* INITIALIZE TABLE INDEX POINTER TO START.
370 CALL TABLSORT TSA1 C'80' C'77' C'03' C'A' C'C' /* SORT TABLE BY REC-NR.
 MOVE SPACES TO HDA1 /*
 MOVE C'REC-NR SEQUENCE ' TO HDA1 /*
 PERFORM 700 THRU 799 /* DUMP AND PRINT SORTED TABLE.
 MOVE C'END OF TEST' TO PRT1 /* E-X-A-M-P-L-E OF QUOTES
 PRINT DOUBLESPACED /* PRINT THE CARTOON ENDING.
 GO TO EOJ /* FORCE EOJ.

700 DOHEADERS /* PAGE EJECT AND PRINT HEADERS.
 SET TSA INITIAL /*
710 IF TSA1-10 IS HIVALUE /* TEST FOR TABLE END.
 GO TO 790. /* EQ. GO PRINT MESSAGE AND EXIT.
 PERFORM 800 THRU 899 /* PRINT CURR. TABLE ENTRY AT STAT. 800-899.
 SET TSA UP 80 /* INCREMENT TABLE INDEX POINTER TO NEXT ENTRY.
 GOTO 710 /* GO PROCESS THIS ENTRY.
790 MOVE C'* * * END OF TABLE * * *' TO PRT1 /*
 PRINT DOUBLESPACED /* MOVE & PRINT ENDING MESSAGE.
799 EXIT /* EXIT

Examples 4–31

Example 13

800 MOVE TSA1-80 TO PRT1 /* MOVE TABLE ENTRY TO PRINT LINE.
 PRINT /* PRINT IT
899 EXIT /* EXIT
9999END /* STATEMENTS END./* FOLLOWS, THEN INF DATA
/*
120050002CLEARY,TOM 2371160
120050008RUNNINGTREE,TOM 3252304
120050014LEANINGHORSE,C.E3096720
120050017LUBINPINSKI,CLY 3841728
120050026RODKOWSKI,GENE 3837240
120050103LONNYSTAR,RACHEL3518592
120050105ZONK,HIERONYMOUS4562800
120050129ATWATER,SCOTT 2760120
120050340CLEGHORN,DELLA 3466232
120080356CLEMENS,GARY 4206752
120080387CLEVELAND,GROVER4049672
120080399COCER,ONIES 2697288
120080410EVERS,HANK 3593392
120100423FAIR,MAXINE 4921840
120150620LAFARY,ALFRED 4453592
120150621LANDERS,CAROL 4745312
120150763LANDERS,MICHAEL 4139432
120150867LAROCHELLE,RISA 5179152
121201034LAWSON,MOLER 6066280
/*

4–32 VISION:Report Reference Guide

Example 13

TABLE LOAD SEQUENCE PAGE 1
PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D GROSS REC-NR

 12 005 0002 CLEARY TOM 2371160 001
 12 005 0008 RUNNINGTREE TOM 3252304 002
 12 005 0014 LEANINGHORSE C.E 3096720 003
 12 005 0017 LUBINPINSKI CLY 3841728 004
 12 005 0026 RODKOWSKI GENE 3837240 005
 12 005 0103 LONNYSTAR RACHEL 3518592 006
 12 005 0105 ZONK HIERONYMOUS 4562800 007

LAST NAME SEQUENCE PAGE 2
PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D GROSS REC-NR

 12 005 0129 ATWATER SCOTT 2760120 008
 12 005 0002 CLEARY TOM 2371160 001
 12 005 0340 CLEGHORN DELLA 3466232 009
 12 008 0356 CLEMENS GARY 4206752 010
 12 008 0387 CLEVELAND GROVER 4049672 011
 12 008 0399 COCER ONIES 2697288 012
 12 008 0410 EVERS HANK 3593392 013
 12 010 0423 FAIR MAXINE 4921840 014

FIRST NAME SEQUENCE PAGE 3
PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D GROSS REC-NR

 12 015 0620 LAFARY ALFRED 4453592 015
 12 005 0014 LEANINGHORSE C.E 3096720 003
 12 015 0621 LANDERS CAROL 4745312 016
 12 005 0017 LUBINPINSKI CLY 3841728 004
 12 005 0340 CLEGHORN DELLA 3466232 009
 12 008 0356 CLEMENS GARY 4206752 010
 12 005 0026 RODKOWSKI GENE 3837240 005
 12 008 0387 CLEVELAND GROVER 4049672 011

GROSS DESC. SEQUENCE PAGE 4
PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D GROSS REC-NR

 12 120 1034 LAWSON MOLER 6066280 019
 12 015 0867 LAROCHELLE RISA 5179152 018
 12 010 0423 FAIR MAXINE 4921840 014
 12 015 0621 LANDERS CAROL 4745312 016
 12 005 0105 ZONK HIERONYMOUS 4562800 007
 12 015 0620 LAFARY ALFRED 4453592 015
 12 008 0356 CLEMENS GARY 4206752 010
 12 015 0763 LANDERS MICHAEL 4139432 017

REC-NR SEQUENCE PAGE 5
PLANT DEPT EMPNO LAST NAME FIRST NAME Y-T-D GROSS REC-NR

 12 005 0002 CLEARY TOM 2371160 001
 12 005 0008 RUNNINGTREE TOM 3252304 002
 12 005 0014 LEANINGHORSE C.E 3096720 003
 12 005 0017 LUBINPINSKI CLY 3841728 004
 12 005 0026 RODKOWSKI GENE 3837240 005
 12 005 0103 LONNYSTAR RACHEL 3518592 006
 12 005 0105 ZONK HIERONYMOUS 4562800 007
 12 005 0129 ATWATER SCOTT 2760120 008

The report output was truncated for conciseness.

Examples 4–33

Example 14

Example 14

Native VSAM Using GET, QUIKIPDS/QUIKINCL, REPORT, SORT AREA with
RELEASE/RETURN, DISPLAY, CALL to QUIKDATE

This example reads the AR file and builds an area for sorting (using the
RELEASE verb to pass a record to the SORT and the RETURN verb to receive a
sorted record and the location to which it is to be delivered). The area could
have been made smaller, in order for the SORT to be more efficient, and not
have to sort as big a record as the original input file. The REPORT statement is
used to print a report. At EOJ time, a message displays on the console. A CALL
to QUIKDATE is also demonstrated.

The OPTION UEXIT1=subrtn-exit allows you to invoke a user exit. QUIKIPDS
(for MVS) or QUIKINCL (for VSE) is used in this example as a method to get
file definitions for the AR file, allowing the standardization of file definitions
within VISION:Report.

Note: The OPTION UEXIT1=QUIKIPDS, in conjunction with the ++INCLUDE
ARDEFINE, allows you to retrieve the member from a partitioned data set
(PDS) under MVS; for VSE, the OPTION UEXIT1=QUIKINCL, in conjunction
with the ++INCLUDE Q.ARDEFINE accomplishes the same results with a
source library. The statements contained in the ++INCLUDE member are
incorporated into the VISION:Report program at that point.

Other examples that follow in this chapter, as well as some examples in the
SAMPLIB, also utilize this optional feature, as it helps in standardizing data
names. Additional JCL is required if QUIKIPDS/QUIKINCL is used. For MVS,
a DD statement with the file name of QUIKIPDS is required to point to the data
set containing the member ARDEFINE. For VSE, a DLBL statement containing
the source book must be included in the LIBDEF concatenation. For further
details and examples of JCL required, see the sections QUIKIPDS —PDS and
PDS/E Include Subroutine (MVS Only) or QUIKINCL — Source Statement
Library Routine (VSE Only) in Chapter 6.

4–34 VISION:Report Reference Guide

Example 14

VISION:Report Statements
OPTION UEXIT1=QUIKIPDS /* If VSE, use "OPTION UEXIT1=QUIKINCL"
**
* *
* SAMP14: NATIVE VSAM USING 'GET' FOR AR FILE. *
* *
* SORT AREA BY AR-ZIP, WHICH USES RELEASE/RETURN*
* *
* CONVERT 2-DIGIT MONTH TO ALPHABETIC BY *
* CALLING QUIKDATE. *
* *
* USER EXIT1 (UEXIT1) POINTS TO USAGE OF SUBRTN *
* QUIKIPDS (MVS) OR QUIKINCL (VSE) TO OBTAIN *
* FILE DEFINITIONS FOR THE AR FILE. *
* *
* QUIKIPDS READS A MEMBER, INDICATED ON THE *
* "++INCLUDE MEMNAME" STATEMENT, FROM A PDS. *
* THE PDS CAN BE JUST ONE DD STATEMENT OR IT *
* COULD BE CONCATENATED. *
* *
* QUIKINCL READS A MEMBER, INDICATED ON THE *
* "++INCLUDE MEMNAME" STATEMENT, FROM A VSE *
* SOURCE STATEMENT LIBRARY. *
* *
* THE "++INCLUDE ARDEFINE" STATEMENT, WHICH *
* MUST START IN POSITION 1, INDICATES WHERE THE *
* MEMBER IS TO BE INCLUDED WITHIN THE PROGRAM. *
* *
* ADDITIONAL DD STATEMENTS OR DLBL STATEMENTS *
* ARE REQUIRED IN THE JOBSTREAM IF *
* QUIKIPDS/QUIKINCL IS USED. *
* *
* DISPLAY, REPORT VERBS ALSO USED. *
* *
**
INFKSDS 0352 / If VSE, remove * at position 1
EQU AR-ENT-REC INF000-000
++INCLUDE ARDEFINE /* If VSE, “++INCLUDE Q.ARDEFINE”
EQU MY-CTR WST1-3-P ZEROS /* Print only so much
EQU MY-MSG WST4-19 C'END OF SAMPLE 14'
EQU MY-MONTH WST20-28 /* Month spelled out
EQU MY-YYYY WST29-32
EQU MY-YY1 WST29-30 C'20'
EQU MY-YY2 WST31-32

 REPORT AR-ZIP (Z, I, P) SPACE21
 AR-ACCOUNT (ACCOUNT-NR) SPACE1
 AR-ACCT-CODE SPACE2
 AR-PHONE (PHONE NUMBER) SPACE2
 AR-SSN (SOCIAL SECURITY) SPACE2
 MY-MONTH (TRAN MONTH) SPACE1
 AR-TRAN-DD (TRAN DAY) SPACE1
 MY-YYYY (TRAN YEAR)

 SORT AREA RL352 ON AR-ZIP

010 GET INF ATEND 200
 IF AR-ZIP IS NOT GT ZEROS /* Edit out garbage
 GOTO 010.
 RELEASE INF1 TO SORT
 GOTO 010

200 RETURN SORTED INTO INF1
 IF VAL196 IS EQ TO C'E' /* See if INF at EOF

Examples 4–35

Example 14

 IF VAL200 IS EQ TO C'E' /* As well as sort
 GOTO 900.
 IF VAL200 IS EQ TO C'E' /* See if sort at EOF
 GOTO 900.
 MOVE SPACES TO MY-MONTH
 MOVE SPACES TO MY-YYYY
 IF AR-TRANS-DATE IS NOT NUMERIC
 MOVE SPACES TO AR-TRANS-DATE /* Clear it out
 GOTO 300. /* Skip if date not numeric
 IF AR-TRANS-DATE IS NOT GT ZEROS
 MOVE SPACES TO AR-TRANS-DATE /* Clear it out
 GOTO 300. /* Skip if date not numeric
* EXAMPLE OF CALLING "QUIKDATE" TO CONVERT TWO-DIGIT MONTH
* TO ALPHABETIC MONTH
 CALL QUIKDATE C'09' AR-TRANS-DATE C'MMDDYY ' MY-MONTH
 IF @VAL-RETURN-CD NOT = ZEROS
 MOVE SPACES TO MY-MONTH /* Clear it out
 GOTO 300.
 MOVE AR-TRAN-YY TO MY-YY2
 MOVE C'20' TO MY-YY1 /* Fix prefix
300 PRINT REPORT
 ADD C'1' TO MY-CTR
 IF MY-CTR IS LT P'65'
 GOTO 200.

900 DISPLAY MY-MSG
 GOTO EOJ
9999 END

The following JCL examples show the addition of source statements or libraries
that contain the ARDEFINE member, as well as sample JCL for SORT.

VSE JCL Example
// JOB SAMP14
// DLBL SORTOUT,'QJ.SORTOUT',0
// EXTENT SYS001,SYSWK1,1,0,1,30
// ASSGN SYS001,DISK,VOL=SYSWK1,SHR
// DLBL QAREWK1,'WORK',0
// EXTENT SYS003,SYSWK1,1,0,1,60
// ASSGN SYS003,DISK,VOL=SYSWK1,SHR
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL INF,'ARFILE.VSAM',,VSAM
// EXEC QUKBJOB,SIZE=512K
 … VISION:Report statements as shown above
/*
/&

4–36 VISION:Report Reference Guide

Example 15

MVS JCL Example
//SAMPLE15 JOB (800-0000,0000)
//RUNIT EXEC QJTEST
//QJ.QUIKIPDS DD DISP=SHR,DSN=your.VISION.source ARDEFINE
//QJ.SYSOUT DD SYSOUT=*
//QJ.SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//QJ.SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//QJ.SYSUT1 DD DISP=SHR, INF
// DSN=ARFILE.VSAM
//QJ.SYSIN DD *
 ... VISION:Report statements as shown above
/*
//

Example 15

Additional Working Storage and QUIKVSAM, Using OPTION, POINT, GET-UPD,
ERASE, and MOVE with Quotes

When there is a shortage of working storage space, there are several solutions to
choose from, such as using SAV areas, increasing the size of WST, and using a
DUMMY or IGN data set/file.

In this example, assume WST has a default of 1000 bytes. By using OPTION
WSTSIZE=1500, the WST is expanded from 1000 bytes to 1500 bytes. The output
area has the DUMMY or IGN on the appropriate DD or file name JCL
statement. This example uses the technique of instructing VISION:Report to
allocate buffer space for the output OFA file, but in the JCL, the file is to be
assigned IGN in VSE or given DUMMY status in an MVS environment.

This example uses QUIKVSAM to access the Accounts Receivable (AR) VSAM
file, using the DD or file name of ARFILE. You must include a JCL statement
with the DD or file name of ARFILE. Input records (INF) containing the account
code are read, and used as a pointer to the ARFILE; records are read from the
ARFILE and all records matching the account code are then deleted.

This example demonstrates various commands such as:

■ OPTION (allowing for VSAM updates)

■ POINT to get the VSAM file at the correct key position

■ GET-UPD to allow VSAM to update the ARFILE

■ ERASE to delete the VSAM record

■ CLOSE to signal QUIKVSAM to close the ARFILE.

Note: The DD or file name parameter on the CALL to QUIKVSAM must be 8
bytes long, padded with spaces to the right, if necessary.

Examples 4–37

Example 15

For further details on QUIKVSAM, see the section QUIKVSAM in Chapter 7.

This example also includes techniques for moving literals that include single
quotes into another field. Near the end of the VISION:Report program there are
a few examples that use a slightly different approach.

VISION:Report Statements
OPTION WSTSIZE=1500 /* DEMONSTRATE EXPANDING WORKING STORAGE SIZE
OPTION UEXIT1=QUIKIPDS /* UEXIT1=QUIKIPDS IF MVS; VSE IS QUIKINCL

**
* *
* SAMP15: INCREASE WSTSIZE FROM "DEFAULT" OF 1000 TO 1500 *
* DEMONSTRATE USAGE OF INCREASING WORKING *
* STORAGE BY USING "OFA" AREAS, AND ASSIGNING *
* OFA FILE TO 'IGNORE' IF VSE, AND 'DUMMY' IF *
* MVS. *
* USAGE OF QUIKVSAM, WITH OPTION, POINT, *
* GET-UPD, ERASE, AND CLOSE. *
* SEVERAL GOOD EXAMPLES OF USING THE 'MOVE' *
* VERB THAT HAS QUOTES IN THE LITERAL *
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1
OFATAPE20352035NSYS010 / IF VSE, REMOVE * AT POSITION 1

EQU AR-ENT-REC OFA000-000
++INCLUDE ARDEFINE /* ++INCLUDE Q.ARDEFINE IF VSE

EQU QV-FEEDBACK WST1401-1413 /* QUIKVSAM FEEDBACK AREA
EQU QV-TYPE WST1401 /* TYPE FILE, 'K,E,R'
EQU QV-ACCESS WST1402 /* TYPE ACCESS
EQU QV-FILLER1 WST1403 /* RESERVED
EQU QV-LRECL WST1404-1407-B /* RECORD LENGTH
EQU QV-VSAMRCEC WST1408-1409-B /* RC & EC
EQU QV-VSAMRC WST1408-B /* RETURN CODE (RC)
EQU QV-VSAMEC WST1409-B /* ERROR CODE
EQU QV-RBA WST1410-1413-B /* RBA

EQU DELETE-CTR WST1420-1422 ZEROS /* NUMBER RECORDS DELETED

 REPORT AR-LAST-NAME
 AR-ACCOUNT (ACCOUNT-NR)
 AR-ACCT-CODE
 AR-CITY

 CALL QUIKVSAM C'ARFILE ' C'OPTION' QV-FEEDBACK /* FEEDBACK

010 GET INF ATEND 900 /* GET INPUT PARAMETERS FOR DELETING

* READ INPUT THAT CONTAINS A 2-BYTE FIELD OF ACCT-CODE
* DELETE ALL RECORDS FROM VSAM ARFILE THAT CONTAINS KEYS (PARTIAL)
* STARTING WITH THOSE 2 BYTES.

 CALL QUIKVSAM C'ARFILE ' C'POINT' INF1 C'KGE02'
 IF QV-VSAMRCEC = X'0810' /* NO RECORD FOUND
 GOTO 700. /* TELL USER THIS
020
 CALL QUIKVSAM C'ARFILE ' C'GET-UPD' AR-RECORD /* READ IT
 IF QV-VSAMRC NOT = X'00' /* WE'LL ASSUME EOF
 GOTO 900.

4–38 VISION:Report Reference Guide

Example 15

* WE'RE ONLY GOING TO DELETE ALL RECORDS WHOSE KEY STARTS
* WITH WHAT CAME IN FROM INPUT FILE

 IF AR-KEY-ACCT-CD = INF1-2 /* DO WE HAVE A MATCH?
 GOTO 100. /* ... YES, BINGO!
 GOTO 010 /* NOT ANY MORE
100
 PRINT REPORT
 CALL QUIKVSAM C'ARFILE ' C'ERASE' /* DELETE IT
 IF QV-VSAMRC NOT = X'00' /* SOME KIND OF ERROR !!
 GOTO 800. /* ABORT AND NOTIFY
 ADD C'1' TO DELETE-CTR
 GOTO 020

700 MOVE C'POINT FAILED. KEY=' TO PRT1
 MOVE INF1-2 TO PRT20
 PRINT
 PRINTHEX QV-FEEDBACK
 GOTO 010

800 MOVE C'ERROR DURING ERASE' TO PRT1
 MOVE AR-KEY TO PRT20
 PRINT
 PRINTHEX QV-FEEDBACK
 GOTO 010

900 CALL QUIKVSAM C'CLOSE' /* WRAP-UP TIME

* EXAMPLES OF "MOVE" WITH QUOTES INTO OUTPUT FIELD
* STATEMENT 901-903 CREATES THE SAME RESULTS AS STATEMENTS 921-925
* STATEMENTS 921-925 IS THERE JUST FOR DEMONSTRATION PURPOSES
* AND A REPEAT OF STATEMENTS 901-903

901 MOVE C'NUMBER OF ''DELETED'' RECORDS:' TO PRT1
902 MOVE DELETE-CTR TO PRT30 0C
903 PRINT

921 MOVE C'NUMBER OF ' TO PRT1
922 MOVE C'''DELETED''' TO PRT11
923 MOVE C' RECORDS:' TO PRT20
924 MOVE DELETE-CTR TO PRT30 0C
925 PRINT

 MOVE C'IF MA & TO KEYS ARE USED,' TO PRT1
 MOVE C' THERE ARE 68 RECORDS DELETED' TO PRT26
 PRINT DOUBLESPACED
 GOTO EOJ

9999END

Examples 4–39

Example 15

VSE JCL Example
// JOB QJVSAM
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// LIBDEF SOURCE,SEARCH=(lib.sublib) Contains Q.ARDEFINE
// DLBL ARFILE,'ARFILE.VSAM',,VSAM Using QUIKVSAM
// ASSGN SYS010,IGN Assign OFA to ignore
// EXEC QUKBJOB
 ... VISION:Report statements as shown above
MA
TO
/*
/&

MVS JCL Example
//QJVSAM JOB (800-0000,0000),'USE QUIKVSAM'
//STEP1 EXEC PGM=QUIKJOB,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//SYSPRINT DD SYSOUT=*
//QUIKIPDS DD DISP=SHR,DSN=your.VISION.source Contains ARDEFINE
//ARFILE DD DISP=SHR,DSN=ARFILE.VSAM Using QUIKVSAM
//SYSUT2 DD DUMMY, OFA
// DCB=(BLKSIZE=2035,LRECL=2035,RECFM=F), etc
//SYSIN DD *
 ... VISION:Report statements as shown above
//SYSUT1 DD *
MA
TO
/*
//

4–40 VISION:Report Reference Guide

Example 16

Example 16

TABLSPEC, Indexing, Table ACCUM, BREAK, Summary Output to Disk

A company wants an analysis to be done on selected accounts and departments
in each of its plants. The information is contained in a cost distribution
summary file that was designed in such an efficient manner as to make it
difficult to use with conventional report listing programs. The record format is
variable, with the first 40 positions of fixed data and the remainder being a
variable number of trailer segments consisting of 20 bytes each. The maximum
record length is 1040 bytes.

The task is to index through the trailer segments selecting account data which
matches a table entry. On a matching entry accumulate the dollar amount in the
table counter. On a break in plant or department fields write to an output file
the table entries that contain non-zero amounts along with plant and
department.

VISION:Report Statements
OPTION SEQCHK=NO

EQU PLANT-IN INF1-2
EQU DEPT-IN INF3-5

EQU ACCT-IN PTA1-2
EQU AMT-IN PTA3-9

EQU PLANT-OUT OFA1-2
EQU DEPT-OUT OFA3-5
EQU ACCT-OUT OFA6-7
EQU AMT-OUT OFA8-18

 TABLSPEC 0050 01 02 03 06 LIST /* TABLE ARG=1-2, FUNCTION 3-8.

 BREAK 1 DEPT-IN /* SPECIFY FIELDS TO DO BREAK COMPARISONS
 BREAK 2 PLANT-IN /* NOTE, NO 'ACCUM' BEING USED
* LOOP THROUGH TABLE & ZAP PACKED ZERO OUT COUNTER USE
 SET TSA INITIAL /* SET INDEX TABLE POINTER TO START.

10 IF TSA1 IS HIVALUE /* TEST FOR END OF TABLE.
 GOTO 20. /* EQ, GO TO STAT. 20 TO START.
 MOVE ZEROS TO TSA3-8-P /* PLACE ZEROS IN TABLE ENTRY,
 /* POS 3-8, PKD.
 SET TSA UP 8 /* INCR. INDEX TO NEXT TABLE ENTRY.
 GOTO 10 /* GO TO START OF LOOP.

20 GET /* READ A RECORD.
 CHECKBREAKS ON BREAKS PERFORM 40 THRU 50 /* ACTUAL BREAK COMPARE
* AND ON A BREAK, CONTROL WILL GO TO STAT. 40-50 FOR PROCESSING
 MOVE PLANT-IN TO WST1 /* SAVE PLT # FOR OUTPUT RECORDS.
 MOVE DEPT-IN TO WST3 /* SAVE DEPT # FOR OUTPUT RECORDS.
 *
 SET PTA INF6
30 IF ACCT-IN IS BLANK /* TEST FOR END OF SEGMENTS
 GOTO 20. /* EQ, GO READ NEXT RECORD.

Examples 4–41

Example 16

 IF ACCT-IN IS ONTABLE /* DO TABLE LOOKUP FOR ACCT IN THIS SEGMENT
 ADD AMT-IN TO TBH3-8-P. /* FOUND, ADD AMT INTO TABLE ENTRY COUNTR
 SET PTA UP 9 /* INCREMENT INDEX POINTER TO NEXT SEGMNT
 GOTO 30 /* GO PROCESS NEXT SEGMENT.

* THE FOLLOWING WILL OUTPUT RECORDS FROM TABLE DATA ON A CONTROL BRK
40 SET TSA INITIAL /* SET INDEX TABLE POINTER TO START.
45 IF TSA1 IS HIVALUE /* TEST FOR END OF TABLE.
 GOTO 50. /* EQ, ALL ENTRIES DONE
 IF TSA3-8-P IS ZERO /* CHK IF THIS ENTRY IS ZERO.
 GOTO 48. /* EQ, BYPASS ON ZERO CONDITION.
 MOVE WST1-2 TO PLANT-OUT /* MOVE PLANT TO OUTPUT.
 MOVE WST3-5 TO DEPT-OUT /* DEPT
 MOVE TSA1-2 TO ACCT-OUT /* ACCT-NR
 MOVE TSA3-8-P TO AMT-OUT /* AMT
 WRITE OFA /* WRITE THE RECORD.
 MOVE ZEROES TO TSA3-8-P /* ZAP ZEROS TO TABLE ENTRY FOR NEXT USE.
48 SET TSA UP 8 /* INCR. TABLE INDEX TO NEXT ENTRY.
 GOTO 45 /* GO PROCESS NEXT TABLE ENTRY.
50 EXIT /* GO BACK TO NORMAL PROCESSING.
800 GOTO EOJ
9999END /* STATEMENTS END, TABLE FOLLOWS.
AA
LL
MM
TT
VV
(END OF SOURCE)
(INPUT DATA)
08005AA0006682XX0000013RR0037810DD0936100GG0602100YY0702700NN0080880
08005MM0000331SS0004511
08007VV0209085SS0004902CC0004915EE0000050HH0000002AA0092003ZZ0008100
08008RR0017171MM0000370LL0008899CC0001572YY0000665HH0000790
08012AA0449121BB0000412
08033PP0009099BB0003954DD0055557LL0038271RR0018904
12005DD0040933ZZ0000001WW0007119AA0059924EE0018663
13005ZZ0202020WW0198333QQ0005140DD0000338
13006SS0002132HH0004784MM0000998EE0001670GG0096461RR0011188II0003180
13006JJ0039700EE0082842SS0091532
18022BB0001001KK0029100II0001099UU0005989JJ0210000FF0770000

(OUTPUT DATA)
08005AA00000006682
08005MM00000000331
08007AA00000092003
08007VV00000209085
08008LL00000008899
08008MM00000000370
08012AA00000449121
08033LL00000038271
12005AA00000059924
13006MM00000000998

4–42 VISION:Report Reference Guide

Example 17

Example 17

ACCUM Counts, Amounts Using CTR-NO, BREAK, CHECKBREAKS, QUIKIPDS,
LIMITREADS, PAGETOTALS, REPORT, SORT, and Numerous IF Statements While
Validating

This example demonstrates how to read the ARFILE, breaking on account code
within state. This example also shows the usage of PAGETOTALS and
LIMITREADS, along with numerous IF statements to validate numeric fields
and skip spaces in customer name or state. The file is sorted first and a report is
printed using the REPORT statement. A break with a final total is also
demonstrated.

VISION:Report Statements
OPTION UEXIT1=QUIKIPDS /* UEXIT1=QUIKIPDS IF MVS; VSE IS QUIKINCL
**
* *
* SAMP17: ACCUM COUNTS, AMOUNTS USING CTR-NO, BREAKS *
* (INCLUDING BREAK WITH 'F' (FINAL), *
* CHECKBREAKS, QUIKIPDS/QUIKINCL, LIMITREADS, *
* PAGETOTALS, REPORT, SORT, AND *
* NUMEROUS 'IF' STATEMENTS DURING VALIDATION. *
* *
* NOTE: YOU MAY GET AN ERROR . *
* CA-SORT HAS AN OPTION CALLED 'CHECK=' WHICH *
* MAY BE SET TO 'Y' OR 'N'. IF THE *
* INSTALLATION DEFAULT IS 'Y' THEN WHENEVER *
* ALL THE INSERTED RECORDS ARE NOT DELETED THE *
* SORT TASK WILL END WITH RETURN CODE X'0010'. *
* INSERT 'CHECK=N' INTO THE OPTION STRING. *
* *
* =====> THE ERROR CAN BE IGNORED. *
**
INFDISC52800352SSYS005 / IF VSE, REMOVE * AT POSITION 1
EQU AR-ENT-REC INF
++INCLUDE ARDEFINE /* ++INCLUDE Q.ARDEFINE IF VSE
EQU CUST-NAME WST1-15 /* SHORTEN CUSTOMER NAME
EQU IPAY WST16-21 2C /*
EQU IBAL WST22-27 2C /*
EQU BAL WST28-33 2C /*

 TITLE 'SAMPLE17-PAGETOTALS, ACCUM W/CTR, BREAK, CHECKBREAKS'

 REPORT AR-STATE CUST-NAME IPAY IBAL BAL AR-ACCT-CODE

 PAGETOTALS

 LIMITREADS 100 INF /* DON'T DO ANY MORE THAN THIS
 SORT FILE INF ON AR-STATE AR-ACCT-CODE

 BREAK 1 AR-ACCT-CODE SB 1 SA 2 PRINT C'ACCT CODE TOT'
 BREAK 2 AR-STATE SB 1 SA 2 PRINT C'STATE TOTALS'
 BREAK F AR-ACCT-CODE SB 2 SA 2 PRINT C'FINAL TOTALS' IN TOT POS 5

010 GET INF ATEND EOJ

Examples 4–43

Example 17

 IF AR-CUST-NAME EQ SPACES /* KICK OUT BLANK NAMES
 GOTO 010.
 IF AR-STATE EQ SPACES OR /* KICK OUT BLANK STATES
 IF AR-ZIP NOT NUMERIC /* OR NON-NUMERIC ZIP-CODES
 GOTO 010.
 IF AR-INSTL-PAY NOT NUMERIC /* ENSURE GOOD FIELD
 GOTO 010.
 IF AR-INSTL-BAL NOT NUMERIC /* ENSURE GOOD FIELD
 GOTO 010.
 IF AR-BALANCE NOT NUMERIC /* ENSURE GOOD FIELD
 GOTO 010.
 MOVE AR-CUST-NAME TO CUST-NAME /* MAKE IT SHORTER
 MOVE AR-INSTL-PAY TO IPAY /* OR GIVE
 MOVE AR-INSTL-BAL TO IBAL /* A DIFFERENT
 MOVE AR-BALANCE TO BAL /* NAME

 CHECKBREAKS

 ACCUM AR-INSTL-PAY IN A 5 BYTE CTR, ON BREAKS PRINT IN POS 26 2C
 ACCUM AR-INSTL-BAL IN A 5 BYTE CTR, ON BREAKS PRINT IN POS 40 2C
 ACCUM AR-BALANCE IN A 5 BYTE CTR, ON BREAKS PRINT IN POS 54 2C

 PRINT REPORT

 GOTO 010

9999END

4–44 VISION:Report Reference Guide

Example 18

Example 18

ACCUM Using CTR, BREAK, and CHECKBREAKS

This example produces a report by department within plant. It reflects
department totals, plant totals, and grand totals.

The requirements are:

■ Calculate and total this week’s gross.

■ Calculate and total this week’s FICA.

■ List various fields.

■ Total previous YTD gross.

■ Report only departments 005 and 010.

The input record is 80 positions long and resides on disk. The format of the file
is:

COL CONTENT
1-2 Plant Number
3-5 Department Number
6-9 Employee Number
10-25 Name
26-31 Date of Birth (YYMMDD)
32-37 Date of Employment (YYMMDD)
38-39 Education
40-45 Skill Codes
46-49 Hourly Rate xx.xx
50-53 Hours Worked xx.xx
54-58 Previous YTD Gross xxxxxx.xx Packed Decimal
59-63 YTD State Tax xxxxx.xx Fixed Point Binary
64-69 YTD FICA xxxx.xx EBCDIC
70-80 Unused

VISION:Report Statements
 OPTION LISTOPT=YES,STMTEND=80
**
* *
* SAMP18: PRODUCE REPORT BY DEPARTMENT WITHIN PLANT. *
* ACCUM USING CTR, BREAKS, AND CHECKBREAKS. *
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1

EQU GROSS-PAY WST1-4-P
EQU CURR-FICA WST9-11-P
EQU WST-PLANT-DEPT WST101-105
EQU PLANT-DEPT INF1-5
EQU PLANT INF1-2
EQU DEPARTMENT INF3-5
EQU EMP-NR INF6-9
EQU EMP-NAME INF10-25
EQU BIRTH-DATE INF26-31 /* YYMMDD

Examples 4–45

Example 18

EQU EMPLY-DATE INF32-37 /* YYMMDD
EQU EDUCATION INF38-39
EQU HOURLY-RATE INF46-49 2
EQU HOURS-WORKED INF50-53 2
EQU PREV-YTD-GROSS INF54-58-P 2C
EQU YTD-STATE-TAX INF59-63-B 2C
EQU YTD-FICA INF64-69 2C
000 HDR 1A 1 $IPLDAT$ PAYROLL DEMO WITH SUMMARY
001 HDR 1B PAGE PG
002 HDR 2A 0 DATE OF DATE OF
003 HDR 2B PREVIOUS HRLY THIS YTD
004 HDR 3A PLT DEPT EMP EMPLOYEE.NAME .BIRTH.. EMPLOYMENT EDUC YT
005 HDR 3B D GROSS WORK RATE WEEK GROSS STATE TAX YTD FICA CURR FICA
010 BREAK 1 DEPARTMENT SB 1 SA 1 PRINT C'DEPT TOTS' IN TOT POS 011
020 BREAK 2 PLANT SB 1 SA E PRINT C'PLANT TOTS' IN TOT POS 011
050 GET
 IF DEPARTMENT IS EQ C'005' OR
 IF DEPARTMENT IS EQ C'010'
 GO TO 060.
 GO TO 050
060 CHECKBREAKS
 MOVE PLANT-DEPT TO WST-PLANT-DEPT /* STORE THE PLANT AND DEPT NR.
 MOVE PLANT TO PRT2 /* MOVE PLANT NR TO PRINT.
 MOVE DEPARTMENT TO PRT6 /* MOVE DEPT NR TO PRINT.
 MOVE EMP-NR TO PRT10 0 /* MOVE EMPLOYEE NR TO PRINT, ZERO-SUPPRESS.
 MOVE EMP-NAME TO PRT15 /* MOVE EMP NAME TO PRINT.
 MOVE INF26-31 TO PRT32 D /* MOVE DATE OF BIRTH, EDITED.
 MOVE INF32-37 TO PRT42 D /* MOVE DATE OF EMPLOYMENT, EDITED.
 MOVE EDUCATION TO PRT53 /* MOVE EDUCATION TO PRINT.
 MOVE PREV-YTD-GROSS TO PRT56 /* MOVE PREVIOUS YTD GROSS TO PRINT.
 MOVE HOURS-WORKED TO PRT69 /* MOVE HOURS WORKED TO PRINT.
 MOVE HOURLY-RATE TO PRT75 2 /* MOVE HOURLY RATE TO PRINT.
 MULT HOURS-WORKED 2D BY HOURLY-RATE 2D GIVING GROSS-PAY 2DR /*
***** /* ABOVE CALCULATES GROSS PAY.
 MOVE YTD-STATE-TAX TO PRT90 2C /* BINARY YTD STATE TAX, CVT TO PKD DEC.
 MOVE GROSS-PAY TO PRT83 2C /* MOVE THIS WEEKS GROSS TO PRINT.
 MOVE YTD-FICA TO PRT110 2C /* MOVE YTD FICA TO PRINT.
 MULT GROSS-PAY 2D BY C'058' 3D GIVING CURR-FICA 2DR /*
***** /* ABOVE CALCULATES FICA.
 MOVE CURR-FICA TO PRT125 2 /* MOVE CURRENT FICA TO PRINT.
 PRINT
 ACCUM PREV-YTD-GROSS IN A 5 BYTE CTR, ON BREAKS PRINT IN POS 052 2C
 ACCUM GROSS-PAY IN A 4 BYTE CTR, ON BREAKS PRINT IN POS 078 2C
 ACCUM CURR-FICA IN A 4 BYTE CTR, ON BREAKS PRINT IN POS 110 2C
 GO TO 050
99999999END
120050002CLEARY,TOM 54020385081912 15854000 ƒÉ ®d050631
120050008RUNNINGTREE,TOM 58051088051516 21744100 ê < |ÿ069446
120050014LEANINGHORSE,C.E67082593070314 20704005 oÊ “þ066124
120050017LUBINPINSKI,CLY 49033170110516 25684500 ˜ Êð]ƒ082031
120050026RODKOWSKI,GENE 51101683081017 25654000 ˜ „ [ê081936
120050103LONNYSTAR,RACHEL66112395011616 23524000 • ßŒ Øí075132
120050105ZONK,HIERONYMOUS75042095121318 30504300 áÂØ ž*097429
120050129ATWATER,SCOTT 72072792030912 18455100 - 6(058936
120050155MERCURY,HARRY 69080491061113 20424800 ècŒ ‹Õ065229
120050158WINTERGARTEN,L.R55102076090416 25374200 n•Œ ¥¥081041
120050176LADRIGANSKI,SUE 64051488051412 22354000 “äî -:071394
120050194JONES,LYLA 73120292031116 26203800 ™ ê I.083693
120050340CLEGHORN,DELLA 50071079051716 23174000 ”ÃƒŒ Îò074014
120080356CLEMENS,GARY 52111573091116 28123200 â†ÍŒ Ùj089826
120080387CLEVELAND,GROVER65090792080214 27074600 ñÅŒ \Û086472
120080399COCER,ONIES 71123194121914 18034400 pˆð ²ù057594
120080410EVERS,HANK 66071085081116 24024000 •l™Œ ý1076729
120100423FAIR,MAXINE 65052285090118 32904200 ñ d "·105095
120100452KIRBY,THOMAS F 76091095100612 17954500 e Y^057339

4–46 VISION:Report Reference Guide

Example 18

120100578KUEHN,JOHN 75102095112312 26804000 ˆ R~085609
120100594LADD,IDA 64110487123116 21834000 ÁÎð êê069733
120150620LAFARY,ALFRED 63121788010216 29774200 àëßŒ Š'095097
120150621LANDERS,CAROL 66012990021417 31723600 åá‘Œ ¬l101326
120150763LANDERS,MICHAEL 54021286031512 27674200 ™äŒ 1&088388
120150867LAROCHELLE,RISA 58030686040116 34624400 é`…Œ Þg110590
121201034LAWSON,MOLER 70041993051418 40555400 -Ãˆ œ|9129532

 09/17/02 PAYROLL DEMO WITH SUMMARY PAGE 1

 DATE OF DATE OF PREVIOUS HRLY THIS YTD

PLT DEPT EMP EMPLOYEE.NAME .BIRTH.. EMPLOYMENT EDUC YT D GROSS WORK RATE WEEK GROSS STATE TAX YTD FICA CURR FICA

 12 005 2 CLEARY,TOM 54/02/03 85/08/19 12 23,711.60 40.00 15.85 634.00 1,104.68 506.31 36.77

 12 005 8 RUNNINGTREE,TOM 58/05/10 88/05/15 16 32,523.04 41.00 21.74 891.34 1,515.19 694.46 51.70

 12 005 14 LEANINGHORSE,C.E 67/08/25 93/07/03 14 30,967.20 40.05 20.70 829.04 1,442.70 661.24 48.08

 12 005 17 LUBINPINSKI,CLY 49/03/31 70/11/05 16 38,417.28 45.00 25.68 1,155.60 1,789.79 820.31 67.02

 12 005 26 RODKOWSKI,GENE 51/10/16 83/08/10 17 38,372.40 40.00 25.65 1,026.00 1,787.70 819.36 59.51

 12 005 103 LONNYSTAR,RACHEL 66/11/23 95/01/16 16 35,185.92 40.00 23.52 940.80 1,639.25 751.32 54.57

 12 005 105 ZONK,HIERONYMOUS 75/04/20 95/12/13 18 45,628.00 43.00 30.50 1,311.50 2,125.72 974.29 76.07

 12 005 129 ATWATER,SCOTT 72/07/27 92/03/09 12 27,601.20 51.00 18.45 940.95 1,285.89 589.36 54.58

 12 005 155 MERCURY,HARRY 69/08/04 91/06/11 13 30,548.32 48.00 20.42 980.16 1,423.19 652.29 56.85

 12 005 158 WINTERGARTEN,L.R 55/10/20 76/09/04 16 37,953.52 42.00 25.37 1,065.54 1,768.18 810.41 61.80

 12 005 176 LADRIGANSKI,SUE 64/05/14 88/05/14 12 33,435.60 40.00 22.35 894.00 1,557.70 713.94 51.85

 12 005 194 JONES,LYLA 73/12/02 92/03/11 16 39,195.20 38.00 26.20 995.60 1,826.03 836.93 57.74

 12 005 340 CLEGHORN,DELLA 50/07/10 79/05/17 16 34,662.32 40.00 23.17 926.80 1,614.85 740.14 53.75

 DEPT TOTS 448,201.60 12,591.33 730.29

 12 010 423 FAIR,MAXINE 65/05/22 85/09/01 18 49,218.40 42.00 32.90 1,381.80 2,292.99 1,050.95 80.14

 12 010 452 KIRBY,THOMAS F 76/09/10 95/10/06 12 26,853.20 45.00 17.95 807.75 1,251.04 573.39 46.85

 12 010 578 KUEHN,JOHN 75/10/20 95/11/23 12 40,092.80 40.00 26.80 1,072.00 1,867.85 856.09 62.18

 12 010 594 LADD,IDA 64/11/04 87/12/31 16 32,657.68 40.00 21.83 873.20 1,521.46 697.33 50.65

 DEPT TOTS 148,822.08 4,134.75 239.82

 PLANT TOTS 597,023.68 16,726.08 970.11

Examples 4–47

Example 19

Example 19

ACCUM Using CTA-CTC, BREAK, CHECKBREAKS, and Summary Output, PUNCH

This example is similar to Example 18, except a department record is produced
on the card punch (tape or disk file can also be used).

The department summary card is to contain:

COL CONTENT
1-2 Plant Number
3-5 Department Number
30-40 Gross Pay for the Department this pay period
42-50 FICA for the Department for this pay period
52-60 Hours worked by the Department this pay period

The break routine or total time exit allows the accumulated data to be formatted
and written at department break-time.

A department number, department name table will be used to get the
department name. (Normally the department table would be in a consolidated
table disk for installation; if this were the case, a QUIKVSAM-generated random
read routine could be used by a CALL to obtain the department name.)

The program used in the previous example will be altered slightly to use named
accumulators (such as, CTA, CTB) so that the accumulated data may be
referenced at the appropriate break routines.

EQU statements will be used to make the various data names and working
storage names more meaningful.

The summary records will be hex printed to show the content and sequence of
occurrence.

VISION:Report Statements
OPTION LISTOPT=NO,STMTEND=80,TRACECT=1
INFDISC32000080SSYS005 / IF VSE, REMOVE * AT POS 1

 * *
 * SAMP19: ACCUM USING CTA-CTC, BREAK, CHECKBREAKS, *
 * AND SUMMARY OUTPUT, PUNCH. *
 * *
 * *
 * PRODUCE REPORT BY DEPARTMENT WITHIN PLANT.*
 * HAVE BREAK ROUTINE AND ACCUMULATE TOTALS *
 * TO BE WRITTEN AT DEPARTMENT BREAK TIME. *
 * *

EQU GROSS-PAY WST1-4-P
EQU CURR-FICA WST9-11-P
EQU WST-PLANT-DEPT WST101-105
EQU PLANT-DEPT INF1-5

4–48 VISION:Report Reference Guide

Example 19

EQU PLANT INF1-2
EQU DEPARTMENT INF3-5
EQU EMP-NR INF6-9
EQU EMP-NAME INF10-25
EQU BIRTH-DATE INF26-31 /* YYMMDD
EQU EMPLY-DATE INF32-37 /* YYMMDD
EQU EDUCATION INF38-39
EQU HOURLY-RATE INF46-49 2
EQU HOURS-WORKED INF50-53 2
EQU PREV-YTD-GROSS INF54-58-P 2C
EQU YTD-STATE-TAX INF59-63-B 2C
EQU YTD-FICA INF64-69 2C
 HDR 1A 1 $IPLDAT$ SAMPLE 19: PAYROLL DEMO WITH SUMMARY
 HDR 1B PAGE PG
 HDR 2A 0 DATE OF DATE OF PREVIOUS
 HDR 2B HRLY THIS YTD
 HDR 3A PLT DEPT EMP EMPLOYEE NAME BIRTH.. EMPLOYMENT EDUC YTD GROSS
 HDR 3B WORK RATE WEEK GROSS STATE TAX YTD FICA CURR FICA
 TABLSPEC 0200 01 03 04 16
 BREAK 1 DEPARTMENT SB 1 SA 1 PRINT C'DEPT TOTS' IN TOT POS 011
 BREAK 2 PLANT SB 1 SA E PRINT C'PLANT TOTS' IN TOT POS 011
050 GET
 IF DEPARTMENT IS EQ C'005' OR
 IF DEPARTMENT IS EQ C'010'
 GO TO 060.
 GO TO 050
060
 CHECKBREAKS ON BREAKS PERFORM 600 THRU 699
 MOVE PLANT-DEPT TO WST-PLANT-DEPT /* STORE THE PLANT AND DEPT NR.
 MOVE PLANT TO PRT2 /* MOVE PLANT NR TO PRINT.
 MOVE DEPARTMENT TO PRT6 /* MOVE DEPT NR TO PRINT.
 MOVE EMP-NR TO PRT10 0 /* MOVE EMPLOYEE NR TO PRINT/ZERO-SUPPRESS.
 MOVE EMP-NAME TO PRT15 /* MOVE EMPLOYEE NAME TO PRINT.
 MOVE BIRTH-DATE TO PRT32 D /* MOVE DATE OF BIRTH, EDITED
 MOVE EMPLY-DATE TO PRT42 D /* MOVE DATE OF EMPLOY,EDITED
 MOVE EDUCATION TO PRT52 /* MOVE EDUCATION TO PRINT.
 MOVE PREV-YTD-GROSS TO PRT55 2C /* MOVE PREVIOUS YTD GROSS TO PRINT.
 MOVE HOURS-WORKED TO PRT66 2 /* MOVE HOURS WORKED TO PRINT.
 MOVE HOURLY-RATE TO PRT72 3 /* MOVE HOURLY RATE TO PRINT.
 MULT HOURS-WORKED 2D BY HOURLY-RATE 3D GIVING GROSS-PAY 2DR
 * /* ABOVE CALCULATES GROSS PAY.
 MOVE GROSS-PAY TO PRT78 2C /* MOVE THIS WEEKS GROSS TO PRINT.
 MOVE YTD-STATE-TAX TO PRT89 2C /* BINARY YTD STATE TAX
 MOVE YTD-FICA TO PRT102 2C /* MOVE YTD FICA TO PRINT.
 MULT GROSS-PAY 2D BY C'058' 3D GIVING CURR-FICA 2DR
 * /* ABOVE CALCULATES FICA.
 MOVE CURR-FICA TO PRT113 2 /* MOVE CURRENT FICA TO PRINT.
 PRINT
 ACCUM PREV-YTD-GROSS IN A 5 BYTE CTA, ON BREAKS PRINT IN POS 052 2C
 ACCUM GROSS-PAY IN A 4 BYTE CTB, ON BREAKS PRINT IN POS 078 2C
 ACCUM CURR-FICA IN A 4 BYTE CTC, ON BREAKS PRINT IN POS 110 2C
 ADD HOURS-WORKED TO CTD1-8-P /* ADD HOURS WORKED, DON'T PRINT TOTAL.
 GO TO 050
600
 IF VAL180 IS NOT EQ C'1' /* IF NOT MINOR/DEPT BREAK - DO NOTHING.
 GOTO 699.
 MOVE WST-PLANT-DEPT TO PUN1-5 /* MOVE STORED PLT/DEPT TO OUTPUT.
 MOVE CTB1-8-P TO PUN30-40 /* MOVE THIS DEPT'S GROSS TO SUM REC.
 MOVE CTC1-8-P TO PUN42-50 /* MOVE FICA FOR DEPT TO SUM REC.
 MOVE CTD1-8-P TO PUN52-60 /* MOVE DEPT'S HOURS WORKED TO SUM REC.
 IF PUN3-5 IS ONTABLE /* FIND DEPARTMENT NAME IN TABLE.
 MOVE TBH4-19 TO PUN10-25. /* MOVE DEPT NAME FROM TABLE TO RECORD.
 PUNCH
699 EXIT
9999END

Examples 4–49

Example 19

 10/19/00 PAYROLL DEMO WITH SUMMARY PAGE 1

 DATE OF DATE OF PREVIOUS HRLY THIS YTD

PLT DEPT EMP EMPLOYEE NAME BIRTH EMPLOYMENT ED YTD GROSS WORK RATE WEEK GROSS STATE TAX YTD FICA CURR FICA

12 005 2 CLEARY, TOM 54/02/03 85/08/19 12 23,711.60 40.00 15.85 63.40 1,104.68 506.31 3.68

12 005 8 RUNNINGTREE, TOM 58/05/10 88/05/15 16 32,523.04 41.00 21.74 89.13 1,515.19 694.46 5.17

12 005 14 LEANINGHORSE, C.E 67/08/25 93/07/03 14 30,967.20 40.05 20.70 82.90 1,442.70 661.24 4.81

12 005 17 LUPINPINSKI, CLY 49/03/31 70/11/05 16 38,417.28 45.00 25.68 115.56 1,789.79 820.31 6.70

12 005 26 RODKOWSKI,GENE 51/10/16 83/08/10 17 38,372.40 40.00 25.65 102.60 1,787.70 819.36 5.95

12 005 103 LONNYSTAR,RACHEL 66/11/23 95/01/16 16 35,185.92 40.00 23.52 94.08 1,639.25 751.32 5.46

12 005 105 ZONK,HIERONYMOUS 75/04/20 95/12/13 18 45,628.00 43.00 30.50 131.15 2,125.72 974.29 7.61

12 005 129 ATWATER,SCOTT 72/07/27 92/03/09 12 27,601.20 51.00 18.45 94.10 1,285.89 589.36 5.46

12 005 155 MERCURY,HARRY 69/08/04 91/06/11 13 30,548.32 48.00 20.42 98.02 1,423.19 652.29 5.69

12 005 158 WINTERGARTEN,L.R 55/10/20 76/09/04 16 37,953.52 42.00 25.37 106.55 1,768.18 810.41 6.18

12 005 176 LADRIGANSKI,SUE 64/05/14 88/05/14 12 33,435.60 40.00 22.35 89.40 1,557.70 713.94 5.19

12 005 194 JONES,LYLA 73/12/02 92/03/11 16 39,195.20 38.00 26.20 99.56 1,826.03 836.93 5.77

12 005 340 CLEGHORN,DELLA 50/07/10 79/05/17 16 34,662.32 40.00 23.17 92.68 1,614.85 740.14 5.38

 PUN1-80 12005 00000125913 000007305 000054805

 FFFFF444444444444444444444444FFFFFFFFFFF4FFFFFFFFF4FFFFFFFFF44444444444444444444

 12005000000000000000000000000000001259130000007305000005480500000000000000000000

 01..05...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

 DEPT TOTS 448,201.60 1,259.13 73.05

12 010 423 FAIR,MAXINE 65/05/22 85/09/01 18 49,218.40 42.00 32.90 138.18 2,292.99 1,050.95 8.01

12 010 452 KIRBY,THOMAS F 76/09/10 95/10/06 12 26,853.20 45.00 17.95 80.78 1,251.04 573.39 4.69

12 010 578 KUEHN,JOHN 75/10/20 95/11/23 12 40,092.80 40.00 26.80 107.20 1,867.85 856.09 6.22

12 010 594 LADD,IDA 64/11/04 87/12/31 16 32,657.68 40.00 21.83 87.32 1,521.46 697.33 5.06

 PUN1-80 12010 00000041348 000002398 000016700

 FFFFF444444444444444444444444FFFFFFFFFFF4FFFFFFFFF4FFFFFFFFF44444444444444444444

 12010000000000000000000000000000000413480000002398000001670000000000000000000000

 01..05...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

 DEPT TOTS 148,822.08 413.48 23.98

 PLANT TOTS 597,023.68 1,672.61 97.03

4–50 VISION:Report Reference Guide

Example 20

Example 20

ACCUM, BREAK, and CHECKBREAKS

This example demonstrates some of the enhancements Options RPTSPCE and
MOVCVTX, along with an increased PRTSIZE. Input file INX and output file
OFF are also used. Expanded maximum lengths for numeric EBCDIC, packed,
and binary fields are shown, as are sequence numbers greater than 4 digits.

VISION:Report Statements
OPTION PRTSIZE=161,STMTEND=80 /* PRTSIZE increased
OPTION TRACECT=1
OPTION RPTSPCE=2 /* Default space between fields
OPTION MOVCVTX=YES /* Convert moving x'...' to receiving field format
INXDISC32000080SSYS003 / IF VSE, REMOVE * AT POS 1
OFFDISC60046004SSYS005 / IF VSE, REMOVE * AT POS 1

 * SAMP20: PRODUCE A QUARTERLY EARNINGS REPORT *
 * FROM THE PERSONNEL MASTER FILE (INX). *
 * WRITE OUT A QUARTERLY FILE (OFF). *
 * *
 * NOTE: THIS SAMPLE PROGRAM DEMONSTRATES SOME OF *
 * THE NEW FEATURES FOR RELEASE 15.0+: *
 * *
 * PRTSIZE=161 *
 * INX INPUT FILE *
 * OFF OUTPUT FILE *
 * RPTSPCE *
 * MOVCVTX *
 * SEQUENCE NUMBERS OVER 4 DIGITS *
 * ADDRESSING FIELD OVER 4096 BYTES *
 * WITHOUT USING A PTR *

EQU PLANT-DEPT INX1-5
EQU PLANT INX1-2
EQU DEPARTMENT INX3-5
EQU EMP-NR INX6-9
EQU EMP-NAME INX10-25
EQU BIRTH-DATE INX26-31 /* YYMMDD
EQU EMPLY-DATE INX32-37 /* YYMMDD
EQU EDUCATION INX38-39
EQU HOURLY-RATE INX46-49 2
EQU HOURS-WORKED INX50-53 2
EQU PREV-YTD-GROSS INX54-58-P 2C
EQU YTD-STATE-TAX INX59-63-B 2C /* 5 byte binary field
EQU YTD-FICA INX64-69 2C
EQU OFF-RECORD OFF001-6004
EQU OFF-RECORD /* Redefines
EQU OFF-PLANT (2)
EQU OFF-DEPT (3)
EQU OFF-NR-EMP (3)-P /* Number employees
EQU OFF-HRS-WRKED (6)-P 2C
EQU OFF-YTD-STATE (6)-P 2C
EQU OFF-YTD-GROSS (5)-B 2C /* 5 byte binary field
EQU OFF-YTD-FICA (19) 2C /* 19 byte ebcdic field
EQU OFF-NET (10)-P 2C /* 10 byte packed field
EQU OFF-MISC-DED (4)-P 2C
EQU OFF-RESERVED OFF5000 /* Set over 4096

Examples 4–51

Example 20

EQU OFF-RESERVED
EQU OFF-RESVRD1 (7)-B 2C /* Demonstrate MOVCVTX
EQU OFF-RESVRD2 (6)-P 2C /* Demonstrate MOVCVTX
EQU OFF-RESVRD3 (7) 2C /* Demonstrate MOVCVTX
EQU OFF-END-IT OFF5999-6003-B /* End of record
 TITLE1 'EXAMPLE 20 - QUARTERLY EARNINGS REPORT'
 TITLE2 'COMPUTER ASSOCIATES'
 REPORT PLANT SPACE4
 DEPARTMENT (DEPT)
 EMP-NR SPACE1
 HOURS-WORKED (HRS WORKED)
 PREV-YTD-GROSS SPACE1
 YTD-STATE-TAX YTD-FICA
 BREAK 1 DEPARTMENT SB 0 SA 2 /* Level 1 control break field.
 BREAK 2 PLANT SB 0 SA 2 /* Level 2 control break field.
NOTE: INX WILL NOT GOTO EOJ AUTOMATICALLY; ONLY INF DOES
3000 GET INX ATEND 90000 /* Read an earnings record from input inx
 CHECKBREAKS ON BREAKS PERFORM 9000 THRU 11000
* THE FOLLOWING ACCUMULATES AMT FIELDS &
* SPECIFIES PRINT POSITIONS
* ====> HOWEVER, "ACCUM" WITH "REPORT" WILL NOT
* PRINT AT BREAK TIME
* TO DO THAT, YOU NEED "HDR" STATEMENTS.
 ACCUM HOURS-WORKED IN A 5 BYTE CTA, ON BREAKS PRINT IN POS 21 2
 ACCUM PREV-YTD-GROSS IN A 6 BYTE CTB, ON BREAKS PRINT IN POS 33 2C
 ACCUM YTD-STATE-TAX IN A 6 BYTE CTC, ON BREAKS PRINT IN POS 48 2C
 ACCUM YTD-FICA IN A 5 BYTE CTD, ON BREAKS PRINT IN POS 63 2C
 ACCUM ONE IN A 3 BYTE CTH, ON BREAKS PRINT IN POS 122
 MOVE DEPARTMENT TO WST1-3 /* Save for break time
 MOVE PLANT TO WST11-14
 PRINT REPORT /* Print the detail line.
 GO TO 3000 /* Go read next record.
* THE FOLLOWING IS PERFORMED AT BREAK TOTAL TIME
9000IF @VAL-BREAK-LVL IS EQ C'1' /* Chk for level 1 break.
 PERFORM 15000 THRU 16900 /* EQ
 GOTO 11000.
10000
* LEVEL 2 (OR POSSIBLY HIGHER) BREAK THEN
 MOVE CTH6-8-P TO OFF-NR-EMP /* Number of employees for dept
 MOVE WST1-3 TO PRT1 /* Move dept nr from save area
 MOVE C' PLANT TOTAL' TO PRT6 /* Denote break totals.
 PERFORM 16200 THRU 16900
11000EXIT
15000
 MOVE WST11-14 TO PRT1
 MOVE C'DEPARTMENT TOTAL' TO PRT5
16200
BUILD OUTPUT QUARTERLY RECORD THAT IS 6004 BYTES
 MOVE SPACES TO OFF-RECORD /* Build output quarterly record
 MOVE WST11-14 TO OFF-PLANT
 MOVE WST1-3 TO OFF-DEPT
 MOVE CTH6-8-P TO OFF-NR-EMP /* Number of employees for dept
 MOVE CTA4-8-P TO OFF-HRS-WRKED /* Total hours worked
 MOVE CTB3-8-P TO OFF-YTD-GROSS /* Output is 5-byte binary
 MOVE CTC3-8-P TO OFF-YTD-STATE
 MOVE CTD4-8-P TO OFF-YTD-FICA /* Output is 19-byte EBCDIC
* MOVCVTX CONVERTS MOVING OF X'..' FIELDS TO TARGET FIELD FORMAT
* FOLLOWING CODE DEMONSTRATES POWER OF MOVCVTX
 MOVE X'00' TO OFF-NET /* Move x'..' to packed
* OFF-NET SHOULD HAVE X'0000000000000000000C' (10 BYTES PACKED)
 MOVE X'0C' TO OFF-MISC-DED /* Move x'..' to packed
* OFF-MISC-DED SHOULD HAVE X'0000012C'
 MOVE X'0C' TO OFF-RESVRD1 /* Move x'..' to binary
* OFF-RESVRD1 SHOULD HAVE X'0000000000000C'
 MOVE X'0C' TO OFF-RESVRD2 /* Move x'..' to packed

4–52 VISION:Report Reference Guide

Example 20

* OFF-RESVRD2 SHOULD HAVE X'00000000012C'
 MOVE X'0C' TO OFF-RESVRD3 /* Move x'..' to EBCDIC
* OFF-RESVRD3 SHOULD HAVE X'F0F0F0F0F0F1F2'
 MOVE ZEROS TO OFF-END-IT /* Move bin zeros
 WRITE OFF /* Write record out
16900 EXIT
* 90000 PERFORM 10000 THRU 11000
90000 GOTO EOJ
99999999END

10/24/00 EXAMPLE 20 - QUARTERLY EARNINGS REPORT PAGE 1

 COMPUTER ASSOCIATES, INFORMATION MANAGEMENT DIVISION

 PREV YTD

 EMP HRS YTD STATE YTD

 PLANT DEPT NR.. .WORKED GROSS TAX FICA

 12 005 0002 40.00 23,711.60 1,104.68 506.31

 12 005 0008 41.00 32,523.04 1,515.19 694.46

 12 005 0014 40.05 30,967.20 1,442.70 661.24

 12 005 0017 45.00 38,417.28 1,789.79 820.31

 12 005 0026 40.00 38,372.40 1,787.70 819.36

 12 005 0103 40.00 35,185.92 1,639.25 751.32

 12 005 0105 43.00 45,628.00 2,125.72 974.29

 12 005 0129 51.00 27,601.20 1,285.89 589.36

 12 005 0155 48.00 30,548.32 1,423.19 652.29

 12 005 0158 42.00 37,953.52 1,768.18 810.41

 12 005 0176 40.00 33,435.60 1,557.70 713.94

 12 005 0194 38.00 39,195.20 1,826.03 836.93

 12 005 0340 40.00 34,662.32 1,614.85 740.14

 12 DEPARTMENT TOTAL 548.05 448,201.60 20,880.87 9,570.36 13

 12 008 0356 32.00 42,067.52 1,959.85 898.26

 12 008 0387 46.00 40,496.72 1,886.67 864.72

 12 008 0399 44.00 26,972.88 1,256.61 575.94

 12 008 0410 40.00 35,933.92 1,674.09 767.29

 12 DEPARTMENT TOTAL 162.00 145,471.04 6,777.22 3,106.21 4

 12 010 0423 42.00 49,218.40 2,292.99 1,050.95

 12 010 0452 45.00 26,853.20 1,251.04 573.39

 12 010 0578 40.00 40,092.80 1,867.85 856.09

 12 010 0594 40.00 32,657.68 1,521.46 697.33

 12 DEPARTMENT TOTAL 167.00 148,822.08 6,933.34 3,177.76 4

 12 015 0620 42.00 44,535.92 2,074.85 950.97

 12 015 0621 36.00 47,453.12 2,210.75 1,013.26

 12 015 0763 42.00 41,394.32 1,928.48 883.88

 12 015 0867 44.00 51,791.52 2,412.87 1,105.90

 12 DEPARTMENT TOTAL 164.00 185,174.88 8,626.95 3,954.01 4

 12 120 1034 54.00 60,662.80 2,826.17 1,295.32

 12 DEPARTMENT TOTAL 54.00 60,662.80 2,826.17 1,295.32 1

 120 PLANT TOTAL 1095.05 988,332.40 46,044.55 21,103.66 26

The report has been modified to fit onto this page.

Examples 4–53

Example 21

Example 21

ACCUM, BREAK, and CHECKBREAKS with Total Time Calculations, Multiple HDR

This example shows a comparison of the sales history file for each salesmen
with previous year’s sales dollars, this year’s sales dollars, amount of increased
sales dollars, the percent of increase, and a grand total.

This example shows how easily this can be accomplished with VISION:Report
using BREAK and CHECKBREAK for control fields comparisons and ACCUM
for adding sales dollars. When a break does occur, control is passed to
Statements 200-300, which subtract the previous year’s amount from this year’s
amount to give the increase amount. The percent of increase is computed by
dividing previous year’s amount into the increase amount giving the percent of
increase. The increase amount and increase percent are stored in CTC and CTD,
and are automatically printed by VISION:Report in each level 1 break and also
on the final total level.

VISION:Report Statements
INFCARD /* VSE only
EQU P-SALES-NR PRT2
EQU INCR-SALES WST1-6-P
EQU SALESMAN INF1-4
EQU PREV-YR-SALES INF36-40-P
EQU THIS-YR-SALES INF41-45-P
004 HDR 1A 1DATE ENDING $IPLDAT$ SALES COMPARISONS
005 HDR 1B PAGEPG
007 HDR 2A 0SALES SALES $ SALES $ SALES $
008 HDR 2B %
010 HDR 3A MAN LAST YEAR THIS YEAR INCREASE
011 HDR 3B INCR.
020 *
025 BREAK 1 SALESMAN SB 1 SA 1 /* Define control break field.
030 *
050 GET /* Read a record.
060 CHECKBREAKS ON BREAKS PERFORM 200 THRU 300 /* Do break compare.
070*
100 MOVE SALESMAN TO P-SALES-NR /* Move salesman nr to print.
110 ACCUM PREV-YR-SALES IN A 6 BYTE CTA, ON BREAKS PRINT IN POS 10 2C
120 ACCUM THIS-YR-SALES IN A 6 BYTE CTB, ON BREAKS PRINT IN POS 30 2C
130 ACCUM NONE IN A 6 BYTE CTC, ON BREAKS PRINT IN POS 50 2C
140 ACCUM NONE IN A 4 BYTE CTD, ON BREAKS PRINT IN POS 74 1
150 GOTO 050
170 *
180 * The following will be done at total break-time.
190 *
200 MOVE CTB3-8-P TO CTC3-8-P /* Move this-yr sales to CTC.
210 SUB CTA3-8-P FR CTC3-8-P /* Sub prev-yr sales from it gives incr.
220 DIVD CTC3-8-P 0D BY CTA3-8-P 2D GIVING CTD6-8-P 1DR /* Calc incr. %
300 EXIT /* Give control to VISION:Report for printing.
9999END

4–54 VISION:Report Reference Guide

Example 21

DATE ENDING 01/15/00 SALES COMPARISONS PAGE 1

SALES SALES $ SALES $ SALES $ %
 MAN LAST YEAR THIS YEAR INCREASE INCR.

1001 686,420.66 742,658.15 56,237.49 8.2

1124 506,936.70 480,054.54 26,882.16- 5.3-

1256 430,555.14 568,432.67 137,877.53 32.0

1280 122,697.40 446,334.36 323,636.96 263.8

1432 644,108.41 722,963.06 78,854.65 12.2

1549 833,468.38 746,772.04 86,696.34- 10.4-

1573 .00 345,127.22 345,127.22 .0

1610 710,325.55 764,588.85 54,263.30 7.6

 3,934,512.24 4,816,930.89 882,418.65 22.4

Examples 4–55

Example 22

Example 22

Amortization Schedule, Calculations, No Input/Output Files, LINECOUNT, DISPLAY,
ACCEPT, Arithmetic Operations, Multiple HDR, PERFORM/THRU

This example computes and prints amoritization schedules, like the one shown
below, using the statements shown on the following page. This example shows
the remaining balance for the last three years of a 30-year mortgage.

09/19/02 AMORTIZATION SCHEDULE PAGE 1
BEGINNING BALANCE INTEREST RATE MONTHLY PAYMENT
--
 DATE PAY-NR PAYMENT INTEREST PRINCIPAL END BALANCE
CURR. BALANCE: 200,000.00 INTEREST RATE: 6.250 MONTHLY PAYMENT: 3,000.00
09/19/02 AMORTIZATION SCHEDULE PAGE 1
BEGINNING BALANCE INTEREST RATE MONTHLY PAYMENT
--
 DATE PAY-NR PAYMENT INTEREST PRINCIPAL END BALANCE
01 2007 53 3,000.00 434.32 2,565.68 80,823.40
02 2007 54 3,000.00 420.96 2,579.04 78,244.36
03 2007 55 3,000.00 407.52 2,592.48 75,651.88
04 2007 56 3,000.00 394.02 2,605.98 73,045.90
05 2007 57 3,000.00 380.45 2,619.55 70,426.35
06 2007 58 3,000.00 366.80 2,633.20 67,793.15
07 2007 59 3,000.00 353.09 2,646.91 65,146.24
08 2007 60 3,000.00 339.30 2,660.70 62,485.54
09 2007 61 3,000.00 325.45 2,674.55 59,810.99
10 2007 62 3,000.00 311.52 2,688.48 57,122.51
11 2007 63 3,000.00 297.51 2,702.49 54,420.02
12 2007 64 3,000.00 283.44 2,716.56 51,703.46
YEARLY TOTAL 36,000.00 4,314.38 31,685.62
01 2008 65 3,000.00 269.29 2,730.71 48,972.75
02 2008 66 3,000.00 255.07 2,744.93 46,227.82
03 2008 67 3,000.00 240.77 2,759.23 43,468.59
04 2008 68 3,000.00 226.40 2,773.60 40,694.99
05 2008 69 3,000.00 211.95 2,788.05 37,906.94
06 2008 70 3,000.00 197.43 2,802.57 35,104.37
07 2008 71 3,000.00 182.84 2,817.16 32,287.21
08 2008 72 3,000.00 168.16 2,831.84 29,455.37
09 2008 73 3,000.00 153.41 2,846.59 26,608.78
10 2008 74 3,000.00 138.59 2,861.41 23,747.37
11 2008 75 3,000.00 123.68 2,876.32 20,871.05
12 2008 76 3,000.00 108.70 2,891.30 17,979.75
YEARLY TOTAL 36,000.00 2,276.29 33,723.71
01 2009 77 3,000.00 93.64 2,906.36 15,073.39
02 2009 78 3,000.00 78.51 2,921.49 12,151.90
03 2009 79 3,000.00 63.29 2,936.71 9,215.19
04 2009 80 3,000.00 48.00 2,952.00 6,263.19
05 2009 81 3,000.00 32.62 2,967.38 3,295.81
06 2009 82 3,000.00 17.17 2,982.83 312.98
07 2009 83 314.61 1.63 312.98
YEARLY TOTAL 18,314.61 334.86 17,979.75
GRAND TOTAL 246,314.61 46,314.61 200,000.00

4–56 VISION:Report Reference Guide

Example 22

VISION:Report Statements
**
* *
* SAMP22: AMORTIZATION SCHEDULE. *
* *
* CALCULATIONS, NO INPUT/OUTPUT FILES, *
* LINECOUNT, ARITHMETIC OPERATIONS, *
* MULTIPLE HDR, PERFORM. *
* *
* SHOW LAST 3 YEARS OF MORTGAGE SCHEDULE. *
* *
* CARD INPUT POSITIONS ARE AS FOLLOWS: (EXAMPLES) *
* NO SPECIFIC CARD COLUMN FORMAT REQUIRED *
* MONTHLY PAYMENT $540.00 ENTER M=540.00 *
* PRINCIPAL $32,000.00 ENTER P=32000.00 *
* INTEREST 18% ENTER I=18.00 *
* NUMBER OF PAYMENTS 3 YEARS ENTER N=36 *
* DATE OTHER THAN THIS MONTH ENTER D=061980 *
* NO SCHEDULE WANTED ENTER S=NO *
* FULL SCHEDULE TO PRINT NO ENTRY MADE *
* *
* EXAMPLE OF INPUT CARD: *
* *
* M=540.00 P=32000.00 I=10.00 N=60 S=NO *
* *
**
OPTION NOSEQ /* NO NEED TO HAVE SEQUENCE CHECKING
OPTION BWZ=YES
OPTION STMTS=400,GENSIZE=12000 /* GENSIZE LEFT IN FOR COMPATIBILITY
OPTION LITSIZE=4000 /* LITSIZE LEFT IN FOR COMPATIBILITY
OPTION STMTEND=80 /* LET IT END ON COLUMN 80

INFCARD / IF VSE, REMOVE * AT POSITION 1

EQU MM WST1-2
EQU YEAR WST3-6
EQU COUNTER WST7-9
EQU ONE WST11
EQU MO-PAY-AMT WST12-17-P
EQU INT-RATE-% WST21-23-P
EQU CURR-BAL WST24-29-P
EQU FN-INT-PAID WST30-35-P
EQU YR-INT-PAID WST36-41-P
EQU MO-INT-AMT WST42-47-P
EQU YR-PAY-AMT WST48-53-P
EQU FN-PAY-AMT WST54-59-P
EQU CALC-INT WST60-65-P
EQU PRIN-AMT WST66-71-P
EQU PAY-NR WST75-77-P
EQU IN-BALANCE WST78-87
EQU IN-INT-RT WST88-92
EQU IN-MON-PAY WST93-99
EQU I-12 WST100-105-P
EQU ST7 WST106-110-P
EQU ST8 WST111-117-P
EQU ST11 WST118-122-P
EQU IN-DATE WST123-128
EQU #PMT WST129-131
EQU FLAG WST132
EQU COL-COUNT WST133-134
EQU SCHEDULE WST135-136
EQU PRINCIPAL-SW WST138
EQU MO-PAY-SW WST139
EQU SCHEDULE-SW WST140

Examples 4–57

Example 22

EQU DATE-SW WST141
EQU NR-PAY-SW WST142
EQU INTEREST-SW WST143
EQU SWITCH-AREA WST138-143
EQU MAX-SIZE WST144-145
EQU CHAR-CNT WST146-147
EQU CHAR-CNT-$ WST148-149
EQU CHAR-CNT-DEC WST150
EQU DEC-FLAG WST151

 HDR 1A 1$IPLDAT$ AMORTIZATION SCHEDULE
 HDR 1B PAGE PG
 HDR 2A 0BEGINNING BALANCE INTEREST RATE MONTHL
 HDR 2B Y PAYMENT
 HDR 3A
 HDR 4A --
 HDR 4B ----------
 HDR 5A DATE PAY-NR PAYMENT INTEREST PRINCIPAL EN
 HDR 5B D BALANCE
 LINECOUNT 60
050 EXIT /* THIS STMT USED FOR TRANSFER POINT
 SET PTD HDC1 /* SET INDEX POINTER TO HDR-C FOR EDITING
 MOVE SPACES TO PTD1-132
 MOVE ZEROS TO WST12-17-P /* ZERO WORKING STORAGE FOR COUNTER USE
 MOVE WST12-77 TO WST18 /* SPREAD CNTR ACROSS WST FOR 11 MORE
 MOVE ZEROES TO WST123-137
 MOVE ZEROES TO WST78-99
 MOVE ZEROES TO WST144-150
 MOVE ZEROS TO I-12
 MOVE ZEROS TO ST7
 MOVE ZEROS TO ST8
 MOVE ZEROS TO COUNTER
 MOVE C'1' TO ONE
 MOVE C'12' TO ST11
 MOVE BLANKS TO SWITCH-AREA
 MOVE BLANKS TO IN-DATE
 MOVE BLANKS TO DEC-FLAG
 *
100 GET INF ATEND EOJ /* READ INPUT CARD, ATEND GOTO EOJ
 SET PTA INF1
101 IF PTA1 IS EQ C'P' /* STEPPING ACROSS INPUT CARD
 GOTO 105.
 IF PTA1 IS EQ C'M' /* MONTHLY PAYMENT
 GOTO 108.
 IF PTA1 IS EQ C'I' /* INTEREST?
 GOTO 110.
 IF PTA1 IS EQ C'N' /* NUMBER OF PAYMENTS
 GOTO 113.
 IF PTA1 IS EQ C'D' /* DATE ENTERED?
 GOTO 116.
 IF PTA1 IS EQ C'S' /* FULL SCHEDULE REQUIRED?
 GOTO 120.
 IF COL-COUNT IS GT C'79' /* END OF CARD CHECK
 MOVE ZEROES TO COL-COUNT
 GOTO 140.
 SET PTA UP 1 /* KEEP LOOKING
 ADD C'1' TO COL-COUNT /* COUNT COLUMNS
 GOTO 101
105 IF PRINCIPAL-SW IS EQ TO C'P' /* THERE IS ALREADY A PRINCIPAL ENTERED
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'P' TO PRINCIPAL-SW
 SET PTA UP 2 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'2' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1

4–58 VISION:Report Reference Guide

Example 22

 PERFORM 925 THRU 950 /* ROUTINE TO COUNT DIGITS IN INPUT
 MOVE C'10' TO MAX-SIZE /* MAXIMUM OF 10 DIGITS ALLOWED IN PRINCIPAL
 IF CHAR-CNT-$ IS GT C'08'
 GOTO 921.
 SUB CHAR-CNT FR MAX-SIZE /* HOW MANY CHAR IN INPUT?
 IF DEC-FLAG IS NOT EQ C'Y'
 SUB C'2' FR MAX-SIZE. /* ALLOW FOR 2 DECIMAL PLACES.
107 SET PTC IN-BALANCE /* POINT TO WORK AREA
 MOVE ZEROS TO IN-BALANCE /* FILL WITH ZEROES
 PERFORM 960 THRU 975 /* ROUTINE TO PLACE INPUT INTO WORK AREA
 SET PTA PTB1 /* MOVE TO NEXT COLUMN SEARCHING FOR CODES
 GOTO 101
108 IF MO-PAY-SW IS EQ C'M' /* THERE IS ALREADY A MONTHLY PAYMENT
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'M' TO MO-PAY-SW
 SET PTA UP 2 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'2' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1
 PERFORM 925 THRU 950 /* ROUTINE TO COUNT DIGITS IN INPUT
 MOVE C'07' TO MAX-SIZE /* MAXIMUM OF 7 DIGITS FOR MONTH PAYMT
 IF CHAR-CNT-$ IS GT C'05'
 GOTO 921. /* ERROR MESSAGE
 IF CHAR-CNT IS GT MAX-SIZE
 GOTO 921.
 SUB CHAR-CNT FR MAX-SIZE /* HOW MANY CHAR IN INPUT?
 IF DEC-FLAG IS NOT EQ C'Y'
 SUB C'2' FR MAX-SIZE. /* ALLOW FOR 2 DECIMAL PLACES.
109 SET PTC IN-MON-PAY /* POINT TO MONTHLY PAYMENT WORK AREA
 MOVE ZEROES TO IN-MON-PAY /* FILL-IN WITH ZEROES
 PERFORM 960 THRU 975
 SET PTA PTB1 /* MOVE TO NEXT COLUMN SEARCHING FOR CODES
 GOTO 101
110 IF INTEREST-SW IS EQ C'I' /* ALREADY AN INTEREST AMT ENTERED
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'I' TO INTEREST-SW
 SET PTA UP 2 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'2' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1
 PERFORM 925 THRU 950 /* ROUTINE TO COUNT DIGITS IN INPUT
 MOVE C'05' TO MAX-SIZE /* MAXIMUM OF 5 DIGITS FOR INTEREST
 IF CHAR-CNT IS GT MAX-SIZE
 GOTO 921.
 SUB CHAR-CNT FR MAX-SIZE /* HOW MANY CHAR IN INPUT?
 SET PTC IN-INT-RT
 IF CHAR-CNT-$ IS GT C'02'
 GOTO 921.
 IF CHAR-CNT-$ IS LT C'02'
 SET PTC UP 1.
 MOVE ZEROES TO IN-INT-RT /* FILL IN WITH ZEROES
 PERFORM 970 THRU 975
 SET PTA PTB1 /* MOVE TO NEXT COLUMN SEARCHING FOR CODES
 GOTO 101
113 IF NR-PAY-SW IS EQ TO C'N' /* THERE ALREADY IS NUMBER OF PAYMT ENTERED
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'N' TO NR-PAY-SW
 SET PTA UP 2 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'2' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1
 PERFORM 925 THRU 950 /* ROUTINE TO COUNT DIGITS IN INPUT
 MOVE C'03' TO MAX-SIZE /* ONLY 3 DIGITS ALLOWED
 IF CHAR-CNT IS GT MAX-SIZE
 GOTO 921.

Examples 4–59

Example 22

 SUB CHAR-CNT FR MAX-SIZE /* HOW MANY CHAR IN INPUT?
 SET PTC #PMT /* POINT TO NR OF PAYMENTS WORK AREA
 MOVE ZEROES TO #PMT
 PERFORM 960 THRU 975
 SET PTA PTB1 /* MOVE TO NEXT COLUMN SEARCHING FOR CODES
 GOTO 101
116 IF DATE-SW IS EQ TO C'D' /* ALREADY A DATE ENTERED
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'D' TO DATE-SW
 SET PTA UP 2 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'2' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1
 PERFORM 925 THRU 950 /* ROUTINE TO COUNT DIGITS IN INPUT
 MOVE C'06' TO MAX-SIZE
 IF CHAR-CNT IS GT MAX-SIZE
 GOTO 921.
 SUB CHAR-CNT FR MAX-SIZE /* HOW MANY CHAR IN INPUT?
 SET PTC IN-DATE
 MOVE ZEROES TO IN-DATE
 PERFORM 960 THRU 975
 SET PTA PTB1 /* MOVE TO NEXT COLUMN SEARCHING FOR CODES
 GOTO 101
120 IF SCHEDULE-SW IS NOT BLANK
 PERFORM 901 THRU 909 /* ERROR MESSAGE
 GOTO 050. /* GET ANOTHER INPUT, THIS WON'T WORK
 MOVE C'N' TO SCHEDULE-SW
 SET PTA UP 4 /* MOVE ACROSS EQUAL SIGN TO FIRST DIGIT
 ADD C'4' TO COL-COUNT /* COUNT COLUMNS OF CARD
 SET PTB PTA1
 GOTO 101
140 IF IN-DATE IS BLANK
 GOTO 141.
 IF IN-DATE IS NUMERIC /* TEST AND USE START DATE IF NUMERIC
 MOVE IN-DATE TO WST1-6
 GOTO 142.
141 MOVE VAL5-6 TO MM /* USE CURR MON FROM VAL-AREA FOR 1ST PAY.
 MOVE C'20' TO WST3-4 /* MAKE 20XX YEAR
 MOVE VAL11-12 TO WST5-6 /* USE CURR YEAR
142 IF IN-BALANCE IS NOT NUMERIC /* TEST IF AMOUNT IS NUMERIC ?
 PRINTHEX IN-BALANCE
 PERFORM 910 THRU 920 /* PRINT BAD REC IF NOT NUMERIC
 GOTO 050. /* AND GET ANOTHER RECORD
 MOVE IN-BALANCE TO CURR-BAL /* USE AS CURR. MORTGAGE BALANCE
 MOVE CURR-BAL TO PRT14-24 2C /* MOVE TO PRINT HDR
 MOVE C'CURR. BALANCE: ' TO PRT1
 *
 IF IN-INT-RT IS ZEROES OR
 IF IN-INT-RT IS NOT NUMERIC /* TEST IF RATE IS NUMERIC ?
 GOTO 900.
 MOVE IN-INT-RT TO INT-RATE-% /* SAVE RATE
 MOVE INT-RATE-% TO PRT45-50 3 /* MOVE TO PRINT HDR
 MOVE C'INTEREST RATE: ' TO PRT30
 *
 IF IN-MON-PAY IS NOT NUMERIC /*TEST IF MONTHLY PAY IS NUMERIC ?
 PERFORM 910 THRU 920 /* PRINT BAD RECORD IF NOT NUMERIC
 GOTO 050. /* AND GET ANOTHER RECORD
 MOVE IN-MON-PAY TO MO-PAY-AMT /* SAVE MONTH AMT
 MOVE MO-PAY-AMT TO PRT66-72 2C /* MOVE TO PRINT HDR
 MOVE C'MONTHLY PAYMENT: ' TO PRT54
 PRINT /* SHOW INPUT DATA
 *
160 IF CURR-BAL IS GT P'0'
 IF MO-PAY-AMT IS GT P'0'
 GOTO 170. /* ALL INFORMATION FOR FULL AMORTIZATION

4–60 VISION:Report Reference Guide

Example 22

 IF MO-PAY-AMT IS LT P'1' OR /* FIGURE MONTHLY PMT OR BALANCE ONLY
 IF CURR-BAL IS LT P'1'
 IF SCHEDULE-SW IS EQ C'N' /* NO SCHEDULE INDICATED
 GOTO 599.
 IF CURR-BAL LT P'1' /* ROUTINE TO FIGURE BALANCE
 PERFORM 600 THRU 700
 PERFORM 800 THRU 850
 GOTO 170.
 IF MO-PAY-AMT IS LT P'1' /* ROUTINE TO FIGURE MONTHLY PAYMENTS
 PERFORM 600 THRU 700
 PERFORM 770 THRU 799
 GOTO 170.
 PERFORM 901 THRU 909
 GOTO 050 /* MUST BE AN ERROR START ALL OVER
* AMORTIZATION SCHEDULE
170 DOHEADERS PAGEONE /* FORCE NEW PAGE & HEADERS
 *
200 ADD C'1' TO PAY-NR /* INCREMENT PAYMENT NUMBER
 MULT CURR-BAL 2D BY INT-RATE-% 5D GIVING CALC-INT 2D /* CALC INT. ANNUAL
 DIVD CALC-INT 2D BY C'12' 0D GIVING MO-INT-AMT 2DR /* CALC MO. INT.
 ADD MO-INT-AMT TO YR-INT-PAID /* ACCUM INT. FOR YEAR
 ADD MO-INT-AMT TO FN-INT-PAID /* & FINAL
 MOVE MO-PAY-AMT TO PRIN-AMT /* CALC PRINCIPAL
 SUB MO-INT-AMT FR PRIN-AMT /* MONTHLY AMOUNT
 IF PRIN-AMT IS GT CURR-BAL /* CK FOR
 MOVE CURR-BAL TO PRIN-AMT /* END OF
 MOVE CURR-BAL TO MO-PAY-AMT /* SCHEDULE PAYMENTS
 ADD MO-INT-AMT TO MO-PAY-AMT. /* AMD COMPUTATION.
 SUB PRIN-AMT FR CURR-BAL /* CALC NEW CURR/ENDING BALANCE
 ADD MO-PAY-AMT TO YR-PAY-AMT /* ACCUM TOTAL PAID FOR YEAR
 ADD MO-PAY-AMT TO FN-PAY-AMT /* & FINAL
 *
 MOVE CURR-BAL TO PRT60 2C /* CURR. BALANCE TO PRINT
 MOVE PRIN-AMT TO PRT45 2C /* PRINCIPAL
 MOVE MO-INT-AMT TO PRT30 2C /* INTEREST
 MOVE MO-PAY-AMT TO PRT15 2C /* PAYMENT
 MOVE PAY-NR TO PRT8 0 /* PAYMENT NUMBER
 MOVE YEAR TO PRT5 /* YEAR
 MOVE MM TO PRT1 /* MONTH
 IF MO-INT-AMT IS GT MO-PAY-AMT /* CK IF THIS THING CAN COMPUTE
 PRINT
 MOVE C'PAYMENT TOO SMALL TO COMPUTE' TO PRT1
 DISPLAY PRT1-40 /* TYPE IT ON CONSOLE
 PRINT DOUBLESPACED /* PRINT BUMMER MESSAGE
 GOTO 050. /* GO BACK TO START
 PRINT /* PRINT A DETAIL LINE
 IF CURR-BAL IS ZERO /* TEST FOR END OF THIS SCH.
 GOTO 400. /* EQ, GOTO FINAL TOTALS
 *
 ADD C'1' TO MM /* INCREMENT MONTH
 IF MM IS EQ TO C'13' /* TEST FOR BEGIN OF NEW YEAR
 ADD C'1' TO YEAR /* BUMP YR BY 1
 MOVE C'01' TO MM /* MAKE MONTH 01
300 MOVE YR-PAY-AMT TO PRIN-AMT /* CALC THE YR AMT
 SUB YR-INT-PAID FR PRIN-AMT /* FOR PRIN PAID
 MOVE PRIN-AMT TO PRT45 2C /* MOVE YR PRIN PAID TO PRINT
 MOVE YR-INT-PAID TO PRT30 2C /* INTEREST
 MOVE YR-PAY-AMT TO PRT15 2C /* PAYMENTS
 MOVE C'YEARLY TOTAL' TO PRT1 /* TOTAL LEVEL
 PRINT /* PRINT YR TOTALS
 PRINT /* BLANK AN EXTRA LINE
 MOVE ZEROS TO YR-PAY-AMT /* ZERO YR PAY
 MOVE ZEROS TO YR-INT-PAID. /* & INT
350 EXIT /* EXIT HERE ON FINAL TOTAL LEVEL
 *

Examples 4–61

Example 22

 GOTO 200 /* GO COMPUTE NEXT PAYMENT NUMBER
 * END OF SCHEDULE - PRINT YEARLY & FINAL TOTAL RESULTS
400 PERFORM 300 THRU 350 /* GO PRINT YEARLY TOTALS
 MOVE FN-PAY-AMT TO PRIN-AMT /* CALC THE GRAND TOTAL AMT
 SUB FN-INT-PAID FR PRIN-AMT /* FOR PRIN PAID
 MOVE PRIN-AMT TO PRT45 2C /* MOVE PRIN TO PRINT
 MOVE FN-INT-PAID TO PRT30 2C /* INTEREST
 MOVE FN-PAY-AMT TO PRT15 2C /* PAYMENTS
 MOVE C'GRAND TOTAL' TO PRT1 /* TOTAL LEVEL
 PRINT DOUBLESPACED /* PRINT GRAND TOTALS
 GOTO 050 /* GO PROCESS NEXT SCHEDULE.
 *
* FIND MONTHLY PAYMENT OR BEGINNING BALANCE
599 DOHEADERS PAGEONE /* PRINT HEADLINES FOR REPORT
*
600 IF INT-RATE-% IS ZEROS OR /* CHECK FOR VALID INTEREST RATE
 IF INT-RATE-% IS NOT NUMERIC
 GOTO 900.
 MOVE #PMT TO COUNTER
 DIVD INT-RATE-% 5D BY ST11 0D GIVING I-12 8D /* PRELIMINARY CALCULATIONS
 MOVE I-12 TO ST7 /* IN ORDER TO COMPUTE
 ADD C'100000000' TO ST7 /* MONTHLY PAYMENT OR
 MOVE ST7 TO ST8 /* BEGINNING BALANCE
 SUB C'1' FROM COUNTER
625 IF COUNTER IS ZERO
 GOTO 650.
 MULT ST7 8D BY ST8 8D GIVING ST8 8D
 SUB C'1' FR COUNTER
 GOTO 625
650 DIVD ONE 0D BY ST8 8D GIVING ST8 8D
 MOVE C'100000000' TO ST11
 SUB ST8 FR ST11
700 EXIT
750 IF MO-PAY-AMT IS ZEROS /* COMPUTE MONTHLY PAYMENT
770 DIVD I-12 8D BY ST11 8D GIVING ST8 8D
 MULT CURR-BAL 2D BY ST8 8D GIVING MO-PAY-AMT 2DR
 MOVE MO-PAY-AMT TO PTD61 2C
799 EXIT
 MOVE INT-RATE-% TO PTD33 2 /* SET UP THE PRINT LINE
 MOVE MM TO PRT1
 MOVE YEAR TO PRT5
 MOVE #PMT TO PRT11 0
 MOVE MO-PAY-AMT TO PRT15 2C
 MOVE CURR-BAL TO PRT45 2C
 PRINT DOUBLESPACED
 GOTO 050.
800 DIVD ST11 8D BY I-12 8D GIVING ST8 4D /* CALCULATE BEG. BALANCE
 MULT MO-PAY-AMT 2D BY ST8 4D GIVING CURR-BAL 2DR
 MOVE CURR-BAL TO PTD1 2C
850 EXIT
 MOVE INT-RATE-% TO PTD33 2 /* SET UP PRINT LINE
 MOVE MM TO PRT1
 MOVE YEAR TO PRT5
 MOVE #PMT TO PRT11 0
 MOVE MO-PAY-AMT TO PRT15 2C
 MOVE CURR-BAL TO PRT45 2C
 PRINT
 GOTO 050
900 MOVE C'ERROR-MUST ENTER INTEREST' TO PRT5
 PRINT
 MOVE INF1-80 TO PRT1
 PRINT
 GOTO 050
901 MOVE INF1-80 TO PRT1
 PRINT

4–62 VISION:Report Reference Guide

Example 22

 MOVE C'ERROR IN CODES, M,P,I,N,S,D' TO PRT1
 PRINT
909 EXIT
910 MOVE INF1-80 TO PRT1 /* MOVE BAD RECORD TO PRINT
 MOVE C'DATA IN POS. 1-80 NOT NUMERIC.' TO PRT30
 DOHEADERS
 PRINT DOUBLESPACED
920 EXIT
921 MOVE INF1-80 TO PRT1
 PRINT
 MOVE C'NUMBERS IN INPUT EXCEED MAXIMUM' TO PRT1
 PRINT
 GOTO 050
925 MOVE C'N' TO DEC-FLAG /* CLEAR
 MOVE ZEROES TO CHAR-CNT-$
 MOVE ZEROES TO CHAR-CNT-DEC
 MOVE ZEROES TO CHAR-CNT
935 IF PTB1 IS EQ TO C' ' /* FINISHED WITH THIS NUMBER ?
 ADD CHAR-CNT-$ TO CHAR-CNT
 ADD CHAR-CNT-DEC TO CHAR-CNT
 ADD CHAR-CNT TO COL-COUNT /* COUNT COLUMNS
 GOTO 950.
 IF PTB1 IS EQ C'.' /* IS IT A DECIMAL POINT?
 MOVE C'Y' TO DEC-FLAG /* TURN ON FLAG TO SAY SO
 SET PTB UP 1 /* PASS IT UP
 GOTO 945.
 ADD C'1' TO CHAR-CNT-$ /* COUNT NUMBER OF DIGITS BEFORE DECIMAL
 SET PTB UP 1 /* POINT TO NEXT NUMBER
 GOTO 935
945 IF PTB1 IS BLANK
 GOTO 935.
 IF CHAR-CNT-DEC IS GT C'2'
 GOTO 921.
 ADD C'1' TO CHAR-CNT-DEC /* COUNT DIGITS AFTER DECIMAL
 SET PTB UP 1
 GOTO 945
950 EXIT
960 IF MAX-SIZE IS NOT ZEROES
 SET PTC UP 1
 SUB C'1' FR MAX-SIZE
 GOTO 960.
970 IF PTA1 IS EQ C'.' /* DON'T MOVE IN A DECIMAL POINT
 SET PTA UP 1
 GOTO 970.
 MOVE PTA1 TO PTC1 /* MOVE IN INPUT NUMBER, 1 ATA TIME
 SET PTA UP 1
 SET PTC UP 1
 SUB C'1' FR CHAR-CNT
 IF CHAR-CNT IS NOT ZEROES /* FINISHED MOVING THIS NUMBER?
 GOTO 970. /* NO
975 EXIT
9999END

Examples 4–63

Example 22

M=3000.00 P=200000.00 I=6.25 N=60 S=NO
/* * *
/* * CARD INPUT POSITIONS ARE AS FOLLOWS: (EXAMPLES) *
/* * NO SPECIFIC CARD COLUMN FORMAT REQUIRED *
/* * *
/* * MONTHLY PAYMENT $3000.00 ENTER M=3000.00 3
/* * PRINCIPAL $100,000.00 ENTER P=100000.00 *
/* * INTEREST 6.5 ENTER I=06.50 *
/* * NUMBER OF PAYMENTS 3 YEARS ENTER N=36 *
/* * DATE OTHER THAN THIS MONTH ENTER D=061990 *
/* * NO SCHEDULE WANTED ENTER S=NO *
/* * FULL SCHEDULE TO PRINT NR ENTRY MADE *
/* * *
/* * EXAMPLE OF INPUT CARD: *
/* * *
/* * M=3000.00 P=100000.00 I=10.00 N=60 S=NO *
/* * *
/* ***

4–64 VISION:Report Reference Guide

Example 23

Example 23

Match Records of a Transaction File Against a Master File and Create a New
Master File

A common requirement is the matching of transaction records to a master file.
As an example, take timekeeping records (DET FILE) and match them to a
payroll master file (INF) by employee number. On matching conditions,
generate an output record (OFA) consisting of the timekeeping record and the
employee name, paygrade, and hourly rate taken from the matching payroll
master record.

Any unmatched timekeeping transactions are to be printed and dropped. The
assumption is made that the payroll master file is VSAM KSDS with employee
number as the key, and the transactions reside on a sequential disk file in
employee number sequence. The output records will be written to a disk file.

VISION:Report Statements
**
* *
* SAMP23: MATCH MASTER (INF SEQ) AGAINST *
* TRANSACTION INPUT FILES (DET SEQ) AND *
* CREATE NEW MASTER FILE (OFA SEQ). *
* *
**
INFDISC11000110SSYS005 / IF VSE, REMOVE * AT POSITION 1
DETDISC80000080SSYS009 / IF VSE, REMOVE * AT POSITION 1
OFADISC11000110SSYS006 / IF VSE, REMOVE * AT POSITION 1
 HDR 1A 1$IPLDAT$ UNMATCHED TIMEKEEPING TRANSACTIONS
*
10 GET /* READ PAYROLL MASTER FILE RECORD.
*
20 GET DET /* READ TIMEKEEPING RECORD.
*
30 IF VAL196-197 IS EQ TO C'EE' /* TEST BOTH FILES.
 GOTO EOJ. /* FOR EOF, STOP WHEN EQUAL.
*
 IF INF1-6 IS LT DET1-6 /* COMP EMP.NR. IN INF/DET RECORDS.
 MOVE INF1-110 TO OFA1 /* WRITE OUT OFA RECORD
 WRITE OFA /*
 GET /* READ PAYROLL MASTER FILE RECORD.
 GOTO 30. /* GO COMPARE NEXT RECORD.
*
 IF INF1-6 IS GT DET1-6 /* COMP EMP.NR. IN INF/DET RECORDS.
 MOVE DET1-15 TO PRT1 /* DET LOW UNMATCHED TIME TRANS.
 PRINT DOUBLESPACED /* PRINT TRANS. RECORD & DROP.
 GOTO 20. /* GO READ DET RECORD.
*
* MATCHING RECORD PROCESSING FOLLOWS
*
 MOVE INF1-110 TO OFA1 /* MOVE ORIGINAL INPUT TO OUTPUT
 ADD DET31-36-P TO OFA31-36-P /* UPDATE AMT FIELD
 WRITE OFA /* WRITE RECORD.
 GOTO 20 /* GO READ DET RECORD.
9999END

Examples 4–65

Example 24

Example 24

Print Report with OMIT, SORT AREA, SRTADJ and RPTSPCE

In this example, two simple payroll reports are easily produced using the
REPORT statement, SRTADJ, and RPTSPCE. The input file is read and a report
is produced. A second report is produced after the input file is sorted by
employee name; a truncated record is passed to the SORT by the SORT AREA
declarative. Note that the second PRINT REPORT statement omits certain fields
(which have been truncated from the record).

VISION:Report Statements
OPTION SRTADJ=YES /* OFFSET RELATIVE TO START OF AN AREA
OPTION RPTSPCE=4 /* SPACES IN BETWEEN FIELDS
OPTION BWZ=YES
OPTION LISTOPT=YES

 * *
 * SAMP24: PRINT REPORT WITH OMIT, SORT AREA, *
 * SRTADJ AND RPTSPCE OPTIONS. *
 * *

INFDISC32000080SSYS010 / IF VSE, REMOVE * AT POSITION 1
EQU PLANT WST1-2
EQU DEPT WST3-5
EQU EMP-NR WST6-9
EQU EMP-NAME WST10-25
EQU HR-RATE WST46-49 2C
EQU HR-WORKED WST50-53 2C
EQU GROSS-PAY WST54-58-P 2C
*
SORT AREA (F) RL25 ON EMP-NAME PLANT DEPT
*
 HDR 1A 1
 HDR 2A 0EXAMPLE 24 COMPUTER ASSOCIATES
*
* SET UP REPORT HEADERS
REPORT DEPT (DEPT-NAME) /* FIELD 1
 SPACE1 /* SPACE BETWEEN FIELDS.
 EMP-NR (EMPLOYEE-NUMBER) /* FIELD 2
 EMP-NAME (EMPLOYEE-NAME) /* FIELD 3
 HR-WORKED (HOURS-WORKED) /* FIELD 4
 GROSS-PAY /* FIELD 5
010 GET INF ATEND 400 /* GET DETAIL RECORD.
 MOVE INF1-80 TO WST1
 PRINT REPORT /* PRINT DETAIL (AND TOTALS).
 RELEASE WST1 TO SORT /* PASS RECORD TO SORT
 GOTO 010 /* GET ANOTHER RECORD.
400
 MOVE C'END OF FIRST REPORT' TO PRT1
 PRINT
 MOVE C'REPORT AFTER SORT' TO PRT1
 PRINT
 DOHEADERS /* FORCE NEW HEADINGS NOW
420 RETURN SORTED INTO WST1 /* RECORD RETURNED FROM SORT
 IF @VAL-SORT-EOF EQ C'E' /* SORT EOF?
 GOTO EOJ.

4–66 VISION:Report Reference Guide

Example 24

 PRINT REPORT OMIT EMP-NR /* DROP FIELDS NOT NEEDED
 HR-WORKED
 GROSS-PAY
 GOTO 420
99999999END

 10/24/00 PAGE 1
 EXAMPLE 24 COMPUTER ASSOCIATES
 DEPT EMPLOYEE EMPLOYEE HOURS GROSS
 NAME NUMBER NAME...... WORKED PAY
 005 0002 CLEARY,TOM 40.00 23,711.60
 005 0008 RUNNINGTREE,TOM 41.00 32,523.04
 008 0387 CLEVELAND,GROVER 46.00 40,496.72
 008 0399 COCER,ONIES 44.00 26,972.88
 008 0410 EVERS,HANK 40.00 35,933.92
 010 0423 FAIR,MAXINE 42.00 49,218.40
 010 0594 LADD,IDA 40.00 32,657.68
 015 0620 LAFARY,ALFRED 42.00 44,535.92
 015 0621 LANDERS,CAROL 36.00 47,453.12
 015 0763 LANDERS,MICHAEL 42.00 41,394.32
 015 0867 LAROCHELLE,RISA 44.00 51,791.52
 120 1034 LAWSON,MOLER 54.00 60,662.80
 END OF FIRST REPORT
 REPORT AFTER SORT
 10/24/00 PAGE 2
 EXAMPLE 24 COMPUTER ASSOCIATES
 DEPT EMPLOYEE EMPLOYEE HOURS GROSS
 NAME NUMBER NAME...... WORKED PAY
 005 ATWATER,SCOTT
 005 CLEARY,TOM
 005 CLEGHORN,DELLA
 008 CLEMENS,GARY
 008 CLEVELAND,GROVER
 008 COCER,ONIES
 010 FAIR,MAXINE
 005 JONES,LYLA
 005 RUNNINGTREE,TOM
 005 WINTERGARTEN,L.R
 005 ZONK,HIERONYMOUS

The report output was truncated for conciseness.

Examples 4–67

Example 25

Example 25

Print Report Summary

This example produces a report similar to the first report in Example 24, with
one major difference. Here, the detailed report is not printed. PRINT REPORT
SUMMARY allows you to obtain a summarized report of totals by changing
only one line of an existing REPORT.

VISION:Report Statements
**
* *
* SAMP25: "PRINT REPORT SUMMARY" TO ALLOW USERS TO *
* OBTAIN A SUMMARIZED REPORT OF TOTALS. *
* *
**
INFDISC32000080SSYS001 / IF VSE, REMOVE * AT POSITION 1
EQU PLANT INF1-2
EQU DEPT INF3-5
EQU EMP-NAME INF10-25
EQU HR-RATE INF46-49 2C
EQU HR-WORKED INF50-53 2C
EQU GROSS-PAY INF54-58-P 2C
EQU AVG-RATE CTC6-8-P 2C
EQU NR-EMP CTD6-8-P
EQU SAVE-DEPT WST1-3 SPACES
*
SORT FILE INF ON PLANT DEPT
*
TITLE1 'COMPUTER ASSOCIATES'
TITLE2 'PAYROLL DISTRIBUTION FOR PLANT $PLANT$'
*
* SET UP REPORT HEADERS
*
REPORT DEPT (DEPT-NAME) /* FIELD 1
 SPACE9 /* FORCE SPACING
 SAVE-DEPT (DEPT-NO) /*
 SPACE5 /* FORCE SPACING
 HR-WORKED (HOURS-WORKED) /* FIELD 2
 SPACE3 /* FORCE SPACING
 GROSS-PAY /* FIELD 3
 SPACE4 /* FORCE SPACING
 AVG-RATE (AVERAGE-HOURLY.RATE) /* FIELD 4
 SPACE5 /* FORCE SPACING
 NR-EMP (NUMBER-OF-EMPLOYEES) /* FIELD 5
*
BREAK 1 DEPT SB 1 SA 1 PRINT C'DEPT TOTAL'
BREAK 2 PLANT SB 1 SA E PRINT C'PLANT TOTAL'
*
* TRACE ALL
010 GET INF ATEND EOJ /* GET DETAIL RECORD.
 CHECKBREAKS ON BREAKS PERFORM 100 THRU 200 /* AT BREAK
* /* PERFORM & PRINT
 MOVE DEPT TO SAVE-DEPT /* ** ADDED-SAVE FOR TOTALS TIME
 ACCUM HR-WORKED IN A 4 BYTE CTA /* SET UP TOTALS FOR HR-WORKED
 ACCUM GROSS-PAY IN A 5 BYTE CTB /* SET UP TOTALS FOR GROSS-PAY
 ACCUM NONE IN A 3 BYTE CTC /* SET UP TOTALS FOR AVG-RATE
 ACCUM ONE IN A 3 BYTE CTD /* SET UP NUM. OF EMPLOYEES

4–68 VISION:Report Reference Guide

Example 25

 PRINT REPORT SUMMARY /* MOVE DEPT TO PRT AREA
 GOTO 010 /* GET ANOTHER RECORD
*
* COMPUTE WEIGHTED AVERAGE OF HOURLY RATE
*
100 DIVD CTB4-8-P 2D BY CTA5-8-P 0D GIVING CTC6-8-P 2D
 IF VAL180 EQ C'F' /* ARE WE AT GRAND TOTALS?
 MOVE C'DIVISION TOTALS' TO PRT1.
200 EXIT
 GOTO EOJ
9999END

09/17/2002 COMPUTER ASSOCIATES PAGE 1
 PAYROLL DISTRIBUTION FOR PLANT 12
 NUMBER
DEPT HOURS GROSS AVERAGE OF
NAME .WORKED PAY HOURLY.RATE EMPLOYEES
DEPT TOTAL 54805 448,201.60 8.17 13
DEPT TOTAL 16200 145,471.04 8.97 4
DEPT TOTAL 16700 148,822.08 8.91 4
DEPT TOTAL 16400 185,174.88 11.29 4
DEPT TOTAL 5400 60,662.80 11.23 1
PLANT TOTAL 109505 988,332.40 9.02 26

09/17/2002 COMPUTER ASSOCIATES PAGE 2
 PAYROLL DISTRIBUTION FOR PLANT
 NUMBER
DEPT HOURS GROSS AVERAGE OF
NAME .WORKED PAY HOURLY.RATE EMPLOYEES
DIVISION TOTALS 109505 988,332.40 9.02 26

Some of the report output has been truncated for conciseness.

Examples 4–69

Example 26

Example 26

SET PCC, MOVE VARIABLE LENGTH, EQU with Literals, Negative Numbers, WHEN
and WHEN/REVERSE, QUIKVSAM with Read-Upd and Update

The following example updates an accounts receivable VSAM file (for example,
CHARGE CARD). Each transaction is printed and SET PCC is used to suppress
normal printer spacing, allowing payments to be underlined. Customer name
format is reversed from last name first to first name last with the variable length
MOVE and the REVERSE WHEN scan in lines 100 through 200, and then
printed in the new format.

VISION:Report Statements
OPTION STMTEND=80,SEQCHK=NO
**
* *
* SAMP26: UPDATE CHARGE MASTER VSAM FILE. PRINT ALL *
* TRANSACTIONS. USE SET PCC TO UNDER-SCORE *
* PAYMENTS ON A PRINT LINE. *
* *
* ALSO HAS EXAMPLES OF VARIABLE LENGTH MOVE, *
* AND 'REVERSE WHEN' IN SCANNING CUSTOMER NAME, *
* REVERSING FROM LAST NAME FIRST TO *
* FIRST NAME FIRST. *
* *
**
INFDISC72800080SSYS012 / If VSE, remove * at position 1
*
EQU AMOUNT WST4-10 2C ZEROES
 /* Master amount total (PRT spec. 2c).
EQU NAME WST20-39 SPACES /* Master name.
EQU CARD-NR WST11-19 S /* Master card number (PRT spec. s).
*
EQU NAME-DET INF1-20 /* Update name.
EQU CARD-NR-DET (9) /* Update card number.
EQU CODE-DET (1) /* Update transaction code.
EQU AMOUNT-DET (5)-P 2C /* Update transaction amount.
*
EQU LAST-LEN SAV1-4-B ZERO /* Length of last name.
EQU FIRST-LEN (4)-B ZERO /* Length of first name.
EQU WHEN-LEN VAL225-228-B /* Length of when scan.

4–70 VISION:Report Reference Guide

Example 26

SORT FILE INF ON CARD-NR-DET /* Sort update records on card number.
*
 HDR 1A 1 NAME CARD-NUMBER TRAN. AMOUNT BALANCE
 CALL QUIKVSAM C'PAYMFLE ' C'OPTION' SAV21
010 GET INF ATEND EOJ /* Get detail record.
 MOVE NAME-DET TO PRT1 /* Print name as appears.
 WHEN NAME-DET INCLUDES C',' /* Scan for end of last name.
 SET PTA PTR2 /* Save ptr of first name.
 MOVE WHEN-LEN TO LAST-LEN /* Save length of last name.
 PERFORM 100 THRU 200 /* Move name to print.
 GOTO 020. /* Go get master record.
 MOVE NAME-DET TO PRT6 /* Last name only to print.
020 CALL QUIKVSAM C'PAYMFLE ' C'READ-UPD' WST1-80 CARD-NR-DET
 IF WST1-10 EQUAL HIVALUES /* Find the master record?
 GOTO EOJ. /* No, GOTO EOJ.
 MOVE CARD-NR TO PRT22 /* Move card number to print.
 MOVE AMOUNT-DET TO PRT42 /* Move transaction amount
 IF CODE-DET = C'P' /* Is transaction a payment?
 MOVE C'PAYMENT' TO PRT35 /* Yes, print c'payment'.
 MULT AMOUNT-DET 2D BY C'-1' 0D GIVING AMOUNT-DET 2D
 GOTO 030. /* Make amount negative.
 MOVE C'CHARGE' TO PRT35 /* No, print c'charge'.
030 ADD AMOUNT-DET TO AMOUNT /* Add transaction amount to total
 MOVE AMOUNT TO PRT58 /* Move total amount due to print
 PRINT DOUBLESPACED /* Print detail line double spaced
 IF CODE-DET EQ C'P' /* Is transaction a payment?
 SET PCC SINGLESPACED /* Yes, set carriage control to
 MOVE C'-' TO PRT1 /* Suppress spacing in order to
 MOVE PRT1-65 TO PRT2 /* Underscore payment transactions
 PRINT /* Print underscore, with no spacing
 SET PCC OFF. /* Turn off user carriage control.
 CALL QUIKVSAM C'PAYMFLE ' C'UPDATE' WST1-80 /*
 GOTO 010 /* Update master record, go get DET
*
100 WHEN NAME-DET INCLUDES NONSPACES REVERSE
 /* Scan for end of name
 MOVE C'20' TO FIRST-LEN /* Calc length of first name.
 SUB LAST-LEN FROM FIRST-LEN /* Sub length of last name.
 SUB WHEN-LEN FROM FIRST-LEN /* Sub length of space at eor.
 MOVE PTA1 TO PRT69 FIRST-LEN. /* Move first name to PRT.
 WHEN PRT69-89 INCLUDES NONBLANKS REVERSE /* Scan for end of name
 MOVE NAME-DET TO PRT1 LAST-LEN. /* Move last name to PRT
200 EXIT
 GOTO EOJ
9999END

Examples 4–71

Example 27

Example 27

Native VSAM Using GET, SET PTA, PRINTHEX

The following example reads a VSAM file sequentially using the GET verb, and
prints the variable length record using the PRINTHEX statement.

VISION:Report Statements
**
* *
* SAMP27: READ VSAM FILE (KSDS) SEQUENTIALLY, USING *
* NATIVE VSAM. *
* *
**
INFKSDS 0080 / If VSE, remove * at position 1
 OPEN INF
 SET PTA INF1
 SET PTA DOWN 2 /* PTA now points to length field.
040 GET
 PRINTHEX INF1 PTA1-2-B
 GO TO 040
9999END

4–72 VISION:Report Reference Guide

Example 28

Example 28

Native VSAM (RRDS) Using GET and SETGENKEY

The following example starts sequential retrieval of an RRDS VSAM file at
record 1000, using the SETGENKEY verb follow by the GET verb.

VISION:Report Statements
**
* *
* SAMP28: READ VSAM FILE (RRDS), STARTING WITH RECORD *
* 1000. USE THE SETGENKEY VERB TO POSITION *
* VSAM FILE, THEN FOLLOW WITH GET TO READ *
* RECORDS SEQUENTIALLY THEREAFTER. *
* *
**
INFRRDS 0080 / If VSE, remove * at position 1
EQU RRDS-KEY WST1-4-B
TITLE 'RRDS FILE LISTING'
REPORT INF1-80 (RRDS.RECORD.IMAGE)
 MOVE P'10' TO RRDS-KEY /* Position to 10th record.
 SETGENKEY INF USING RRDS-KEY /* Equal is the default.
030 GET
 PRINT REPORT
 GO TO 030
9999END

Examples 4–73

Example 29

Example 29

Native VSAM (RRDS) Using WRITE

The following example loads an RRDS VSAM data set with a record size of 20
bytes. The field, PRODUCT-NUMBER, is created by the program at the time of
the load. All records are printed as they are loaded.

VISION:Report Statements
**
* *
* SAMP29: WRITE AN RRDS VSAM FILE USING NATIVE VSAM *
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1
OFARRDS 0020 / IF VSE, REMOVE * AT POSITION 1
*** DEFINE INPUT FILE
EQU INPUT-RECORD INF1-20
*** DEFINE RRDS PRODUCT FILE
EQU PRODUCT-RECORD OFA1-20
EQU PRODUCT-NAME (PRODUCT-RECORD) /* REDEFINE.

EQU WORKINGSTORAGE WST
EQU PRODUCT-NUMBER (4)-B ZEROES

 TITLE 'PRODUCT FILE LOAD'
 REPORT PRODUCT-NUMBER
 PRODUCT-NAME
*** SET UP RECORD LENGTH FOR OFA AS 20 BYTES LONG

 OPEN OFA
 SET PTA OFA1
 SET PTA DOWN 2
 MOVE P'20' TO PTA1-2-B
*** READ THE INPUT CARDS AND LOAD THE RRDS FILE
100 GET
 MOVE INPUT-RECORD TO PRODUCT-RECORD
 ADD C'1' TO PRODUCT-NUMBER
 WRITE OFA
 PRINT REPORT
 GO TO 100
9999END
WIDGETS
ROLLER SKATES
SKATEBOARDS
KITES
SURF BOARDS
/*

4–74 VISION:Report Reference Guide

Example 30

Example 30

Native VSAM (KSDS, RRDS, ESDS) Using Random Access, READ, ADDRECORD,
REWRITE, DELETE

This example shows an update of a VSAM KSDS file. Records are added,
deleted, or updated to the customer master file, or an invoice or payment record
is created, all based upon the INF action-code. A report is printed, showing all
transactions processed.

VISION:Report Statements
**
* *
* SAMP30: UPDATE CUSTOMER MASTER (DET KSDS), *
* ADD A NEW RECORD TO CUSTOMER MASTER FILE (DET)*
* DELETE A CUSTOMER MASTER RECORD, OR *
* CREATE AN INVOICE RECORD (OFA ESDS), OR *
* CREATE A PAYMENT RECORD (OFA ESDS). *
* *
* ACTION ON WHAT TO DO IS BASED UPON INF RECORD.*
* *
**
INFCARD / IF VSE, REMOVE * AT POSITION 1
DETVSAM / IF VSE, REMOVE * AT POSITION 1
INCVSAM / IF VSE, REMOVE * AT POSITION 1
OFAVSAM / IF VSE, REMOVE * AT POSITION 1
EQU ACTION-RECORD INF /* DEFINE INPUT ACTION RECORD.
EQU ACTION-CODE (1)
EQU ACTION-NUMBER (5)
EQU ACTION-PRODUCT (2)
EQU ACTION-AMOUNT (5)
EQU ACTION-NAME (30)

EQU MASTER-RECORD DET /* DEFINE CUSTOMER MASTER RECORD.
EQU MASTER-NUMBER (5)
EQU MASTER-NAME (30)
EQU MASTER-BALANCE (6)
EQU FILLER (MASTER-RECORD)
EQU MASTER-SPACES (41)

EQU PRODUCT-RECORD INC /* DEFINE PRODUCT DESCRIPTION RECORD.
EQU PRODUCT-NUM (2)
EQU PRODUCT-NAME (18)

EQU INVCPAY-RECORD OFA /* DEFINE INVOICE AND PAYMENT RECORD.
EQU INVCPAY-TYPE (1)
EQU INVCPAY-NUMBER (5)
EQU INVCPAYPRODUCT (2)
EQU INVCPAY-AMOUNT (5)
EQU INVCPAY-NAME (30)

EQU WORKINGSTORAGE WST /* DEFINE WORKING STORAGE FIELDS.
EQU MESSAGE (20)
EQU PRODUCT-NUMBER (4)
*** DEFINE TITLE AND REPORT
001 TITLE 'CUSTOMER MASTER UPDATE LISTING'
002 REPORT ACTION-CODE ACTION-NUMBER ACTION-AMOUNT ACTION-PRODUCT

Examples 4–75

Example 30

003 PRODUCT-NAME MASTER-NAME MASTER-BALANCE MESSAGE
*** OPEN FILES AND SET RECORD LENGTHS
*** OPEN DET C'PASSWORD'

 OPEN DET
 SET PTA DET1
 SET PTA DOWN 2 /* POINT TO DET'S RECORD LENGTH FIELD.
 OPEN OFA
 SET PTB OFA1
 SET PTB DOWN 2
 MOVE C'43' TO PTB1-2-B /* INITIALIZE OFA'S RECORD LENGTH FIELD.
*** PROCESS INPUT ACTION REQUESTS
100 GET
 IF ACTION-CODE EQ C'A' /* A = ADD A NEW CUSTOMER MASTER.
 PERFORM 200 THRU 299
 GO TO 175.
 IF ACTION-CODE EQ C'C' /* C = CHANGE A CUSTOMER MASTER.
 PERFORM 300 THRU 399
 GO TO 175.
 IF ACTION-CODE EQ C'D' /* D = DELETE A CUSTOMER MASTER.
 PERFORM 400 THRU 499
 GO TO 175.
 IF ACTION-CODE EQ C'I' OR /* I = CREATE INVOICE RECORD.
 IF ACTION-CODE EQ C'P' /* P = CREATE PAYMENT RECORD.
 PERFORM 500 THRU 699
 GO TO 175.
 MOVE C'INVALID ACTION CODE' TO MESSAGE
175 PERFORM 700 THRU 799 /* CREATE A REPORT LINE.
 GO TO 100
*** ADD A NEW CUSTOMER MASTER RECORD
200 MOVE ACTION-NUMBER TO MASTER-NUMBER
 MOVE ACTION-NAME TO MASTER-NAME
 MOVE ZEROES TO MASTER-BALANCE
 MOVE C'41' TO PTA1-2-B
 ADDRECORD DET ONERROR 260
 MOVE C'MASTER ADDED' TO MESSAGE
 GO TO 299
260 IF @VAL-VSAM-ERR EQ C'DUP'
 MOVE C'DUPLICATE RECORD' TO MESSAGE.
299 EXIT
*** CHANGE AN EXISTING CUSTOMER MASTER RECORD
300 READ DET USING ACTION-NUMBER ONERROR 350
 MOVE ACTION-NAME TO MASTER-NAME
 REWRITE DET
 MOVE C'NAME CHANGED' TO MESSAGE
 GO TO 399
350 IF @VAL-VSAM-ERR EQ C'RNF'
 MOVE C'RECORD NOT FOUND 1' TO MESSAGE.
399 EXIT
*** DELETE AN EXISTING CUSTOMER MASTER RECORD
400 READ DET USING ACTION-NUMBER ONERROR 440
 DELETE DET
 MOVE C'RECORD DELETED' TO MESSAGE
 GO TO 499
440 IF @VAL-VSAM-ERR NOT EQ C'OK '
 MOVE C'RECORD NOT FOUND 2' TO MESSAGE.
499 EXIT
*** CREATE AN INVOICE OR PAYMENT RECORD
500 READ DET USING ACTION-NUMBER ONERROR 600
 IF ACTION-AMOUNT NOT NUMERIC
 MOVE C'AMOUNT NOT NUMERIC' TO MESSAGE
 GO TO 699.
 IF ACTION-PRODUCT NOT NUMERIC
 MOVE C'PRODUCT NOT NUMERIC' TO MESSAGE
 GO TO 699.

4–76 VISION:Report Reference Guide

Example 30

 MOVE ACTION-CODE TO INVCPAY-TYPE
 MOVE ACTION-NUMBER TO INVCPAY-NUMBER
 MOVE MASTER-NAME TO INVCPAY-NAME
 MOVE ACTION-AMOUNT TO INVCPAY-AMOUNT
 IF ACTION-CODE EQ C'I'
 MOVE C'INVOICE NOTED' TO MESSAGE
 ADD ACTION-AMOUNT TO MASTER-BALANCE.
 IF ACTION-CODE EQ C'P'
 MOVE C'PAYMENT NOTED' TO MESSAGE
 SUB ACTION-AMOUNT FR MASTER-BALANCE.
 WRITE INVCPAY-RECORD /* OFA FILE
 REWRITE DET
 GO TO 699
600 IF @VAL-VSAM-ERR NOT EQ C'OK '
 MOVE C'RECORD NOT FOUND 3' TO MESSAGE.
699 EXIT
*** CREATE A REPORT LINE
700 IF @VAL-VSAM-ERR EQ C'RNF'
 MOVE SPACES TO MASTER-SPACES.
 IF ACTION-PRODUCT NOT NUMERIC
 GO TO 760.
 IF ACTION-PRODUCT ZERO
 GO TO 760.
 MOVE ACTION-PRODUCT TO PRODUCT-NUMBER
 MOVE SPACES TO PRODUCT-NAME
 READ INC USING PRODUCT-NUMBER ONERROR 740
 GO TO 770
740 IF @VAL-VSAM-ERR EQ C'RNF'
 MOVE @VAL-VSAM-ERR TO PRT1
 PRINT
 MOVE C'RECORD NOT FOUND 4' TO MESSAGE.
 GO TO 770
760 MOVE C'*INVALID PRODUCT*' TO PRODUCT-NAME
770 PRINT REPORT DOUBLESPACED
 MOVE SPACES TO MASTER-SPACES
 MOVE SPACES TO PRODUCT-NAME
 MOVE SPACES TO MESSAGE
799 EXIT
9999END /* FOLLOWING INPUT IS THE ACNT */
A00015 01500ALWAYS OPEN CAFE INVALID PRODUCT
A00018 00200OLD ENGLISH PIPE SHOPPE NEW RECORD
C00010 EARLY MORNING BAKERY INVALID PRODUCT
C0001001 SUNDAY MORNING BAKERY
D00051 VERY BEST PIE SHOP INVALID PRODUCT
I00020BB10000FARMERS MARKET PRODUCE INVALID PRODUCT
I000208810000FARMERS MARKET PRODUCE
I000200110000FARMERS MARKET PRODUCE
P00040 0S000GREAT NORTHWEST CANNERY INVALID PRODUCT
P00040 05000GREAT NORTHWEST CANNERY INVALID PRODUCT
P000405000999GREAT NORTHWEST CANNERY PAYMENT
/*

Examples 4–77

Example 31

Example 31

Native VSAM using GET, QUIKIPDS, WHEN with INCLUDES/OMITS, WHEN/REVERSE,
IF...NUMERIC, IF...ALPHA, Negative IF, Multiple HDR with $names$

This example reads the AR File, using native VSAM. Several examples of IF
statements are shown, including IF ... NUMERIC, IF ... ALPHA, as well as
negative IF statements such as IF ... NOT NUMERIC and IF ... NOT ALPHA.
Multiple HDR statements (HDR1A-HDR3B) are shown, with various $names$,
such as $IPLDAT$, TIM, $JOBNAM$, and PG. These $names$ are reserved
words, and VISION:Report fills the area specified by these reserved words with
items such as the IPL date, time.

The OPTION LIST=NO statement specifies that the VISION:Report program is
not to be printed. This is normally done in a production environment, where the
program listing is not required. However, in testing or debugging mode, the
LIST=NO should be removed.

VISION:Report Statements
OPTION LIST=NO
OPTION UEXIT1=QUIKIPDS /* UEXIT1=QUIKIPDS IF MVS; VSE IS QUIKINCL
**
* *
* SAMP31: READ ARFILE (VSAM). *
* VERBS: SIMPLE GET AND PRINT I/O VERBS. *
* *
* SCAN CUST-NAME AND SWITCH AROUND FIRST/LAST NAMES *
* WITH 'WHEN' VERB. *
* *
* NUMERIC/ALPHA CHECKS, NEGATIVE & POSITIVE *
* IF .. ALPHA, IF.. NUMERIC, IF..NOT ... *
* *
* MVS: USES UEXIT1=QUIKIPDS AND ++INCLUDE ARDEFINE *
* VSE: USES UEXIT1=QUIKINCL AND ++INCLUDE Q.ARDEFINE*
* USES OPTION OF LIST=NO, *
* AND ON 'HDR', $IPLDAT$, TIM, $JOBNAM$, AND PG.*
* *
**
INFKSDS 0352 / IF VSE, REMOVE * AT POSITION 1
EQU AR-ENT-REC INF
++INCLUDE ARDEFINE /* ++INCLUDE Q.ARDEFINE IF VSE

EQU LENGTHS WST101-108 /* ENTIRE LENGTHS
EQU LAST-LEN WST101-104-B /* LEN FOR LAST NAME
EQU FIRST-LEN WST105-108-B /* LEN FOR FIRST NAME

EQU FIRST-NAME PRT14-24
EQU LAST-NAME PRT26-40

EQU WHEN-LEN VAL225-228-B /* LEN AFTER USING WHEN

 HDR 1A 1 IPLDATE= $IPLDAT$ TIME= TIM JOB NAME= $JOBNAM$
 HDR 1B SAMPLE31 PAGE= PG
 HDR 2A 0SAMPLE PROGRAM USES "GET, PRINT, IF NUMERIC, IF ALPHA,
 HDR 2B IF ...NEGATIVE, WHEN IN SWITCHING LAST/FIRST NAME

4–78 VISION:Report Reference Guide

Example 31

 HDR 3A 0CODE ACCOUNT FIRST NAME LAST NAME STREET
 HDR 3B CITY ST ZIP

010 GET INF ATEND EOJ
 MOVE ZEROS TO LAST-LEN /* CLEAR OUT LEN FIELDS
 MOVE ZEROS TO FIRST-LEN
 MOVE ZEROS TO WHEN-LEN
 MOVE SPACES TO FIRST-NAME
 MOVE SPACES TO LAST-NAME
 IF AR-CUST-NAME EQ SPACES /* SKIP ANY WITH THIS
 MOVE C'*****' TO FIRST-NAME
 MOVE C'*****' TO LAST-NAME
 GOTO 40. /* SKIP "WHEN" VERB

* SCAN AR-CUST-NAME, LOOKING FOR A COMMA, PERIOD, OR A BLANK
* THIS THEN SEPARATES LAST NAME FROM FIRST NAME
* N-O-T-E: IN TRYING TO DOCUMENT EACH LINE OF CODE,
* IT BECAME NECESSARY TO INTERSPERSE COMMENTS
* IN BETWEEN LINES OF CODE
*
* BE CAREFUL OF WHEN THE "WHEN" VERB ACTUALLY ENDS !!
*
* NOTE: WHEN YOU'VE GOT A NAME SUCH AS "S.F.MEM.HOSP"
* OR "SANTA FE MEMORIAL HOSPITAL",
* IT WILL NOT COME OUT PROPERLY, <==========
* BASED UPON THE CURRENT CODING!

 WHEN AR-CUST-NAME INCLUDES C',' OR /* SCAN FOR COMMA
 WHEN AR-CUST-NAME INCLUDES C'.' OR /* SCAN FOR PERIOD
 WHEN AR-CUST-NAME INCLUDES C' ' /* TRY FOR BLANK THEN
 SET PTA PTR2 /* SAVE PTR TO SEPARATOR
 MOVE WHEN-LEN TO LAST-LEN /* SAVE LAST NAME LENGTH

* NEXT CODE SETS UP MAX LENGTH FOR FIRST NAME
* IT SHOULD BE 1 LESS THAN THE ENTIRE LENGTH OF FIELD

 MOVE C'24' TO FIRST-LEN /* SET MAX FOR FIRST NAME

*** SCAN END OF NAME NEXT (CONTINUING OF FIRST 'WHEN' VERB)

 WHEN AR-CUST-NAME INCLUDES NONBLANK REVERSE
 SUB WHEN-LEN FROM FIRST-LEN
 SUB LAST-LEN FROM FIRST-LEN
 MOVE PTA1 TO FIRST-NAME FIRST-LEN
 MOVE AR-CUST-NAME TO LAST-NAME LAST-LEN.

* THE FOLLOWING DOES SOME ALPHA/NUMERIC/SPACES CHECK.

040 IF AR-ACCT-CODE IS NOT ALPHA /* TRY NEGATIVE 'NOT ALPHA'
 MOVE C'*****' TO PRT2
 GOTO 50.
 MOVE AR-ACCT-CODE TO PRT2
050 IF AR-ACCOUNT IS NOT NUMERIC /* NEGATIVE NUMERIC CHECK
 MOVE C'*****' TO PRT6
 GOTO 60.
 MOVE AR-ACCOUNT TO PRT6
060 IF AR-STREET IS NOT = SPACES /* STREET SHOULDN'T BE BLANKS
 MOVE AR-STREET TO PRT43
 GOTO 070.
 MOVE C'*****' TO PRT43
070 IF AR-CITY IS NOT = SPACES /* SHOULDN'T BE BLANKS
 MOVE AR-CITY TO PRT70
 GOTO 080.
 MOVE C'*****' TO PRT70
080 IF AR-STATE IS ALPHA /* SHOULD BE ALPHA

Examples 4–79

Example 31

 MOVE AR-STATE TO PRT90
 GOTO 090.
 MOVE C'**' TO PRT90 /* STATE SHOULD BE ALPHA
090 IF AR-ZIP IS NUMERIC /* CHECK IF NUMERIC
 MOVE AR-ZIP TO PRT94
 GOTO 100.
 MOVE C'*****' TO PRT94 /* ZIP CODE NOT NUMERIC
100 PRINT
 GOTO 010

9999END

IPLDATE= 10/25/00 TIME= 14:33 JOB NAME= QJSMP31 SAMPLE31 PAGE= 1

 SAMPLE PROGRAM USES "GET, PRINT, IF NUMERIC, IF ALPHA, IF NEGATIVE

 CODE ACCOUNT FIRST NAME LAST NAME STREET CITY ST ZIP

 BO 8006547 ERNESTO TORRES 23444 PARK LANE LOS ANGELES CA *****

 EO 6002587 FE HOSP ASSN SANTA 1212 WISCONSIN DRIVE LOS ANGELES CA 80023

 EO 6208657 SUH CHO PYUNG 33333 PALL MALL GLENDALE CA 91206

 EO 7082509 F.MEM.HOSP. S 900 JOHN WAYNE STREET NILES IL 49121

 FO 6024963 GARY E HILL 5445 COVENTRY ST TEMPLE CITY CA 91780

 FO 6044395 MICHEAL S CANO 56479 BOND STREET #12 BREA CA 92621

 FO 6059708 RAY CHAVEZ 7986 MAYFLOWER AVE MONTEREY PARK CA *****

 FO 6095631 MICHAEL TODIPE 5678 REGENT SQR INGLEWOOD CA *****

 FO 6107265 G J GENVARDI 1220 RIVERWAY STREET INDIANAPOLIS IN 46220

 FO 6123228 JULIAN SILVA 33356 WIZZY DR #32 LOS ANGELES CA 90033

 FO 8011508 RAY HUGHES 3025 WINTER ST MONTEREY PARK CA 91754

 IO 2002299 ORTEGA PLACIDO 1247 S ST LOUIS ST LOS ANGELES CA 90023

 IO 6009166 JEFFREY LOCKE 321 PALMOROY AVE ROSEMEAD CA *****

 IO 6112536 NORMA A CHAVEZ 2483 BUCKTOWN HACIENDA HTS CA 91745

 IO 6123317 IRENE VASGUEZ 329 W 7TH ST CITY OF COMMERCE CA 90040

 NA 8003173 ***** ***** 1008 84TH MONTEREY PARK CA 91754

 NA 9010033 ***** ***** 3735 S VICTORIA AVE LOS ANGELES CA 90023

 PO 1001191 MARY CARDOZA 1008 WESTMORELAND LA CA 90007

 PO 1006681 EARL MYERS 3735 84TH LA CANADA CA 91010

 PO 6023185 JOSEPHINE G PORTWOOD 18892 ORCHARD AVE LOS ANGELES CA *****

 PO 6099963 JESUS ROMO 2432 S VICTORIA AVE ORANGE CITY CA *****

 PO 6216846 PAUBLINA TORRES 601 E AVE 28 LOS ANGELES CA 90063

 PO 7030142 JEWEL HARRIS 331 1/2 EAST FIRST LA CA 90031

 PO 7053185 MARY SMITH 280 DOLPHIN CAUSEWAY DOLPHIN AL 36660

 PO 7064535 ***** ***** 1946 HORBART CITY OF COMMERCE CA 90040

 PO 7068794 MERIAN BACTAD 573 SO BOYLE AVE CHINA LAKE CA 93555

 PO 7070721 ***** ***** 610 W 43RD PL HACIENDA HTS CA 91745

 WO 8011036 CHARLES ANDREWS 1310 LOMA DR CAMBRIA PINES CA *****

 WO 8011699 FRANK OBRESON 345 CHICAGO WOODRIDGE IL 60517

 WO 8031096 ARMENDO ROMERO 1730 TIMBERLAND AVENUE TINLEY PARK IL 60477

 WO 9007156 ROAD CO. KANGAROO R 100 ALCOA PLAZA BALTIMORE MD 21227

 WO 9009469 MUT OF WAUSAUEMP 3970 18TH LA CA 90005

 WO 9020039 MUTUAL INS LIBERTY 500 SOUTH UNIVERSITY ST INDIANAPOLIS IN 46202

4–80 VISION:Report Reference Guide

Example 32

Example 32

Native VSAM (ESDS) with Alternate Index, Using OPEN/CLOSE, GET, READ,
SETGENKEY, REWRITE, SET PTA

This example uses a native VSAM (ESDS) with alternative index, along with
other VSAM verbs. First, the DET file is read sequentially using GET, then read
randomly using READ and SETGENKEY with GET. The record is updated by
the REWRITE verb. The OFA file has one record added and finally the INF file
is read sequentially. The various files are opened and closed at different times
and many of the VSAM verbs use the ONERROR option. A print trail shows the
flow of the program through its various stages. Note that files DET and OFA are
the same.

Prior to running the VISION:Report, an IDCAMS job similar to the following
example was run (although the IDCAMS is a MVS job stream, most, if not all
the IDCAMS statements, would be identical under VSE).

DELETE ESDS.TEST CLUSTER
SET MAXCC=0
(NAME(ESDS.TEST) -
 VOLUMES(volser) -
 RECORDSIZE(80 80) -
 NONINDEXED) -
 DATA (NAME(ESDS.TEST.DATA) -
 CISZ(512) -
 TRACKS(1 1))
REPRO INFILE(SYSUT1) -
 OUTDATASET(ESDS.TEST)
PRINT INDATASET(ESDS.TEST) -
 CHARACTER
DEFINE AIX (NAME(ESDS.TEST.AIX) -
 RELATE(ESDS.TEST) -
 VOLUMES(volser) -
 KEYS(10 0) -
 RECSZ(128 256) -
 TRACKS(1 1) -
 UPGRADE) -
 DATA (NAME(ESDS.TEST.AIX.DATA) -
 CISZ(1024)) -
 INDEX (NAME(ESDS.TEST.AIX.INDEX) -
 CISZ(512))
DEFINE PATH (NAME(ESDS.TEST.PATH) -
 PATHENTRY(ESDS.TEST.AIX) -
 UPDATE)
BLDINDEX INDATASET(ESDS.TEST) -
 OUTDATASET(ESDS.TEST.AIX) –
 INTERNALSORT

The input to build the ESDS file is as follows:

BBBB TEST RECORD NUMBER 1
CCCC TEST RECORD NUMBER 2
CCCCCCCCCCTEST RECORD NUMBER 3
BBBBBBBBBBTEST RECORD NUMBER 4
AAAAAAAAAATEST RECORD NUMBER 5

Examples 4–81

Example 32

VSE JCL Example
// JOB SAMP32
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL INF,'ESDSAIX',,VSAM
// DLBL OFA,'ESDSAIX.PATH',,VSAM
// DLBL DET,'ESDSAIX.PATH',,VSAM
// DLBL OFB,'ESDSAIX',,VSAM
* STEP1 - CREATE VSAM ESDS AND ALTERNATE INDEX
/*
// EXEC PGM=IDCAMS,SIZE=AUTO
.
.
.
 REPRO INFILE(SYSIPT) -
 OUTFILE(OFB)
BBBB TEST RECORD NUMBER 1
CCCC TEST RECORD NUMBER 2
CCCCCCCCCCTEST RECORD NUMBER 3
BBBBBBBBBBTEST RECORD NUMBER 4
AAAAAAAAAATEST RECORD NUMBER 5
/*
// EXEC PGM=IDCAMS,SIZE=AUTO
 DEFINE ...
.
.
.
/*
// EXEC QUKBJOB,SIZE=512K
... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//SAMP32 JOB (800-0000,0000),'Example 33'
//STEP1 EXEC QJTEST
//QJ.SYSUT1 DD DSNAME=ESDS.TEST,DISP=SHR
//QJ.SYSUT2 DD DSNAME=ESDS.TEST.AIX,DISP=SHR
//QJ.SYSDET DD DSNAME=ESDS.TEST.AIX,DISP=SHR
//QJ.SYSIN DD *
 ... VISION:Report statements as shown below
/*
//

VISION:Report Statements
OPTION TRACECT=1

* SAMP32: ESDS WITH ALTERNATE INDEX *
* USING NATIVE VSAM. *
* *
* VISION:REPORT VSAM ESDS ALTERNATE INDEX TEST *
* -- *
* GET CLOSE *
* OPEN READ *
* SETGENKEY REWRITE *
* WRITE *

* OUTPUT FILES OFB, OFC, AND OFD ARE NOT USED. *

4–82 VISION:Report Reference Guide

Example 32

* INPUT FILES INC AND IND ARE NOT USED. *
* *
* FILE INF IS A NONEMPTY VSAM ESDS CLUSTER. *
* *
* FILE DET IS A PATH FOR AN ALTERNATE INDEX TO *
* THE INF CLUSTER. *
* *
* FILE OFA IS THE SAME PATH AS FILE DET. <==== *

INFESDS 0040 / IF VSE, REMOVE * AT POSITION 1
OFAESDS 0040 / IF VSE, REMOVE * AT POSITION 1
DETESDS 0040 / IF VSE, REMOVE * AT POSITION 1
 EQU WST-KEY WST1-10
 EQU WST-KEY
 EQU WST-KEY-B WST1-4-B /* REDEFINE TO FOOL IT */
 TITLE '$IPLDAT$ VSAM ESDS ALTERNATE INDEX '
 TITLE ' PAGE PG'

 * VSAM ESDS GET USING ALTERNATE INDEX *

* TRACE ALL
 MOVE C'VSAM ESDS GET' TO PRT1-13
 MOVE C'USING ALTERNATE INDEX' TO PRT15
 PRINT
 OPEN DET
1 GET DET ATEND 2
 IF VAL247-247-B NOT = ZERO
 GO TO 11.
 MOVE DET1-40 TO PRT1-40
 PRINT
 GO TO 1
2 MOVE C'END OF FILE DET' TO PRT1-15
 PRINT DOUBLE SPACED

 * CLOSE AND RE-OPEN FILE AFTER EOF *

 MOVE C'CLOSE DET' TO PRT1
 PRINT
 CLOSE DET
 MOVE C'OPEN DET' TO PRT1
 PRINT
 OPEN DET
 --
 * VSAM ESDS READ USING ALTERNATE INDEX *
 --
 MOVE C'VSAM ESDS READ' TO PRT1-14
 MOVE C'USING ALTERNATE INDEX' TO PRT16
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = CCCCCCCCCC' TO PRT1-23
 PRINT
 MOVE C'CCCCCCCCCC' TO WST-KEY
 READ DET USING WST-KEY-B EQUAL ONERROR 5
 MOVE DET1-40 TO PRT1-40
 PRINT DOUBLE SPACED

 * VSAM ESDS SETGENKEY USING ALTERNATE INDEX *

 MOVE C'VSAM ESDS SETGENKEY' TO PRT1-19
 MOVE C'USING ALTERNATE INDEX' TO PRT21
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = BBBBBBBBBB' TO PRT1-23
 PRINT
 MOVE C'BBBBBBBBBB' TO WST-KEY
 SETGENKEY DET USING WST-KEY-B EQUAL ONERROR 4
 GET DET

Examples 4–83

Example 32

 IF VAL247-247-B NOT = ZERO
 GO TO 11.
 MOVE DET1-40 TO PRT1-40
 PRINT DOUBLE SPACED
 GET DET
 IF VAL247-247-B NOT = ZERO
 GO TO 11.
 MOVE DET1-40 TO PRT1-40
 PRINT

 * VSAM ESDS REWRITE USING ALTERNATE INDEX *

 MOVE C'VSAM ESDS REWRITE' TO PRT1-17
 MOVE C'USING ALTERNATE INDEX' TO PRT19
 PRINT DOUBLE SPACED
 MOVE SPACES TO DET31-40
 MOVE C' REWRITE' TO DET31
 MOVE DET1-40 TO PRT1
 PRINT DOUBLE SPACED
 REWRITE DET ONERROR 7
 MOVE C'REWRITE SUCCESSFUL' TO PRT1
 PRINT DOUBLE SPACED
 MOVE C'CLOSE DET' TO PRT1
 PRINT DOUBLE SPACED
 CLOSE DET

 * VSAM ESDS WRITE USING ALTERNATE INDEX *

 MOVE C'OPEN OFA' TO PRT1
 PRINT
 OPEN OFA
 MOVE C'VSAM ESDS WRITE' TO PRT1-15
 MOVE C'USING ALTERNATE INDEX' TO PRT17
 PRINT DOUBLE SPACED
 MOVE C'# 9' TO OFA1-10
 MOVE C'TEST RECORD NUMBER 6' TO OFA11-30
 MOVE C' WRITE ' TO OFA31-40
 SET PTA OFA1
 SET PTA DOWN 2
 MOVE P'40' TO PTA1-2-B
 MOVE OFA1-40 TO PRT1-40
 PRINT DOUBLE SPACED
 WRITE OFA ONERROR 10
 MOVE C'WRITE SUCCESSFUL' TO PRT1
 PRINT DOUBLE SPACED
 MOVE C'CLOSE OFA' TO PRT1
 PRINT DOUBLE SPACED
 CLOSE OFA

 * GET VSAM ESDS SEQUENTIALLY *

 MOVE C'OPEN INF' TO PRT1
 PRINT
 OPEN INF
 MOVE C'GET VSAM ESDS SEQUENTIALLY' TO PRT1-26
 PRINT DOUBLE SPACED
 PRINT
3 GET INF ATEND 13
 IF VAL247-247-B NOT = ZERO
 GO TO 11.
 MOVE INF1-40 TO PRT1-40
 PRINT
 GO TO 3

 * ONERROR PROCEDURES *

4–84 VISION:Report Reference Guide

Example 32

4 MOVE C'SETGENKEY DET FAILED' TO PRT1
 GO TO 6
5 MOVE C'READ DET FAILED' TO PRT1
6 PRINT DOUBLE SPACED
 MOVE C'KEY =' TO PRT1-5
 MOVE WST-KEY TO PRT7
 PRINT
 GO TO 12
7 MOVE C'REWRITE DET FAILED' TO PRT1
 PRINT DOUBLE SPACED
 GO TO 12
10 MOVE C'WRITE OFA FAILED' TO PRT1
 PRINT DOUBLE SPACED
 GO TO 12
11 MOVE C'GET FAILED' TO PRT1
 PRINT DOUBLE SPACED
12 MOVE C'VSAM RC =' TO PRT1-9
 MOVE VAL247-247-B TO PRT11-13 0
 PRINT
 MOVE C'VSAM EC =' TO PRT1-9
 MOVE VAL248-248-B TO PRT11-13 0
 PRINT
 MOVE C'VAL253-255 =' TO PRT1-12
 MOVE VAL253-255 TO PRT14
 PRINT
 MOVE C'0016' TO VAL46-49
 GO TO 14

 * SUCCESSFUL TEST *

13 MOVE C'END OF FILE INF' TO PRT1-15
 PRINT DOUBLE SPACED
14 MOVE C'END OF TEST' TO PRT1-11
 PRINT TRIPLE SPACED
 GO TO EOJ
9999END

Examples 4–85

Example 33

Example 33

Native Variable Length VSAM (KSDS, ESDS) Using OPEN/CLOSE, GET, WRITE,
SET PTA, READ, SETGENKEY, ONERROR

This example contains variable length VSAM files, ESDS and KSDS, utilizing
native VSAM. Both the ESDS and KSDS files are loaded, then read sequentially
and randomly using READ and SETGENKEY with GET. A print trail, shows the
flow of the program through its various stages. Note that files INF and OFA,
and DET and OFB are the same.

Prior to running the VISION:Report, an IDCAMS job similar to the following
was run (although the IDCAMS is a MVS job stream, most, if not all the
IDCAMS statements, would be identical under VSE).

 DELETE ESDS.TEST CLUSTER
 DELETE KSDS.TEST CLUSTER
 SET MAXCC=0
 DEFINE CLUSTER (NAME(KSDS.TEST) -
 VOLUMES(volser) -
 RECORDSIZE(10 90) -
 KEYS(10 0) -
 INDEXED) -
 DATA (NAME(KSDS.TEST.DATA) -
 CISZ(512) -
 TRACKS(1 1)) -
 INDEX (NAME(KSDS.TEST.INDEX))
 DEFINE CLUSTER (NAME(ESDS.TEST) -
 VOLUMES(volser) -
 RECORDSIZE(10 90) -
 NONINDEXED) -
 DATA (NAME(ESDS.TEST.DATA) -
 CISZ(512) –
 TRACKS(1 1))

VSE JCL Example
// JOB SAMP33
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL INF,'ESDS.TEST',,VSAM
// DLBL OFA,'ESDS.TEST',,VSAM
// DLBL DET,'KSDS.TEST',,VSAM
// DLBL OFB,'KSDS.TEST',,VSAM
// EXEC QUKBJOB
 ... VISION:Report statements as shown below
/*
/&

4–86 VISION:Report Reference Guide

Example 33

MVS JCL Example
//SAMP33 JOB (800-0000,0000),'Example 34'
//STEP1 EXEC QJTEST
//QJ.SYSUT1 DD DISP=SHR,DSN=ESDS.TEST INF
//QJ.SYSUT2 DD DISP=SHR,DSN=ESDS.TEST OFA
//QJ.SYSDET DD DISP=SHR,DSN=KSDS.TEST DET
//QJ.SYSUT3 DD DISP=SHR,DSN=KSDS.TEST OFB
//QJ.SYSIN DD *
 ... VISION:Report statements as shown below
/*
//

VISION:Report Statements

* SAMP33: VARIABLE LENGTH VSAM, KSDS & ESDS *
* USING NATIVE VSAM. *

* OUTPUT FILES OFC AND OFD ARE NOT USED. *
* INPUT FILES INC AND IND ARE NOT USED. *
* *
* FILE OFA IS A VSAM ESDS CLUSTER. *
* FILE OFB IS A VSAM KSDS CLUSTER. *
* *
* FILE INF IS THE SAME DATASET AS FILE OFA. *
* FILE DET IS THE SAME DATASET AS FILE OFB. *
* *

* *
* 1. LOAD ESDS AND KSDS FILES, USING WRITE *
* 2. GET ESDS AND KSDS FILES SEQUENTIALLY, USING GET*
* 3. READ ESDS/KSDS FILES RANDOMLY, USING READ *
* 4. READ ESDS/KSDS FILES RANDOMLY, USING SETGENKEY *
* *
* THERE ARE OPEN/CLOSE AND SET PTX THROUGHOUT PROGRAM*
* ONERROR OPTION USED ON SOME VSAM VERBS. *
* *

INFESDS 0090 / If VSE, remove * at position 1
OFAESDS 0090 / If VSE, remove * at position 1
DETKSDS 0090 / If VSE, remove * at position 1
OFBKSDS 0090 / If VSE, remove * at position 1
 EQU RECORD WST1-7 C'RECORD '
 EQU RECNO WST8 C'0'
 EQU FILLER-1 WST9-10 SPACES
 EQU TYPE WST11-14 SPACES
 EQU FILLER-2 WST15-20 C' ..2'
 EQU FILLER-3 WST21-30 C'....+....3'
 EQU FILLER-4 WST31-40 C'....+....4'
 EQU FILLER-5 WST41-50 C'....+....5'
 EQU FILLER-6 WST51-60 C'....+....6'
 EQU FILLER-7 WST61-70 C'....+....7'
 EQU FILLER-8 WST71-80 C'....+....8'
 EQU RBA (4)-B
 EQU WST-KEY (10)
 EQU LENGTH (2)-B ZERO
 EQU VERB (9) SPACES
 EQU FILE (3) SPACES
 TITLE '$IPLDAT$ '
 TITLE 'LOAD AND READ '
 TITLE 'VARIABLE LENGTH ESDS AND KSDS'
 TITLE ' PAGE PG'

Examples 4–87

Example 33

 * LOAD VARIABLE LENGTH ESDS/KSDS *

 MOVE C'LOAD VARIABLE LENGTH VSAM CLUSTERS' TO PRT1
 PRINT
 PRINT
 MOVE C'WRITE ' TO VERB
1 ADD C'10' TO LENGTH
 ADD C'1' TO RECNO
 MOVE C'ESDS' TO TYPE
 MOVE C'OFA' TO FILE
 SET PTA OFA1
 SET PTA DOWN 2
 MOVE LENGTH TO PTA1-2-B
 MOVE RECORD TO OFA1 LENGTH
 WRITE OFA ONERROR 5
 MOVE C'KSDS' TO TYPE
 MOVE C'OFB' TO FILE
 SET PTA OFB1
 SET PTA DOWN 2
 MOVE LENGTH TO PTA1-2-B
 MOVE RECORD TO OFB1 LENGTH
 WRITE OFB ONERROR 5
 MOVE C' SDS' TO TYPE
 MOVE RECORD TO PRT1 LENGTH
 PRINT
 IF LENGTH IS LT X'0050' /* If record length < 80
 GO TO 1.
2 MOVE C'CLOSE FILES OFA AND OFB' TO PRT1
 PRINT DOUBLE SPACED
 CLOSE OFA
 CLOSE OFB
 --
 * READ ESDS/KSDS SEQUENTIALLY AND ECHO PRINT *
 --
 MOVE C'OPEN FILES INF AND DET' TO PRT1
 PRINT DOUBLE SPACED
 OPEN INF
 OPEN DET
 MOVE C'GET ESDS/KSDS SEQUENTIALLY' TO PRT1
 PRINT DOUBLE SPACED
 PRINT
 MOVE C'GET ' TO VERB
 MOVE C'DET' TO FILE
3 GET INF ATEND 4

 SET PTA INF1
 SET PTA DOWN 2
 MOVE INF1 TO PRT1 PTA1-2-B
 PRINT
 GET DET ATEND 5
 SET PTA DET1
 SET PTA DOWN 2
 MOVE DET1 TO PRT1 PTA1-2-B
 PRINT
 PRINT
 GO TO 3

4 MOVE C'END OF FILE INF' TO PRT1-15
 PRINT DOUBLE SPACED
 MOVE C'CLOSE FILES INF AND DET' TO PRT1
 PRINT DOUBLE SPACED
 CLOSE INF
 CLOSE DET

 * READ VSAM ESDS RANDOMLY USING READ *

4–88 VISION:Report Reference Guide

Example 33

 MOVE C'OPEN FILES INF AND DET' TO PRT1
 PRINT DOUBLE SPACED
 OPEN INF
 OPEN DET
 MOVE C'READING VSAM ESDS RANDOMLY' TO PRT1-26
 MOVE C'USING READ' TO PRT28-41
 PRINT DOUBLE SPACED
 MOVE C'RBA = 60' TO PRT1
 PRINT
 MOVE P'60' TO RBA
 MOVE C'READ ' TO VERB
 MOVE C'INF' TO FILE
 READ INF USING RBA EQUAL ONERROR 5
 MOVE C'RANDOM READ WORKED' TO PRT1-18
 PRINT
 SET PTA INF1
 SET PTA DOWN 2
 MOVE INF1 TO PRT1 PTA1-2-B
 PRINT DOUBLE SPACED

 * READ VSAM KSDS RANDOMLY USING READ *

 MOVE C'READING VSAM KSDS RANDOMLY' TO PRT1-26
 MOVE C'USING READ' TO PRT28-41
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = RECORD 4 ' TO PRT1
 PRINT
 MOVE C'RECORD 4 ' TO WST-KEY
 MOVE C'READ ' TO VERB
 MOVE C'DET' TO FILE
 READ DET USING WST-KEY EQUAL ONERROR 5
 MOVE C'RANDOM READ WORKED' TO PRT1-18
 PRINT
 SET PTA DET1
 SET PTA DOWN 2
 MOVE DET1 TO PRT1 PTA1-2-B
 PRINT DOUBLE SPACED

 * READ VSAM KSDS RANDOMLY USING SETGENKEY *

 MOVE C'READING VSAM KSDS RANDOMLY' TO PRT1-26
 MOVE C'USING SETGENKEY AND GET' TO PRT28
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = RECORD 2 ' TO PRT1-23
 PRINT
 MOVE C'RECORD 2 ' TO WST-KEY
 MOVE C'SETGENKEY' TO VERB
 MOVE C'DET' TO FILE
 SETGENKEY DET USING WST-KEY EQUAL ONERROR 5
 MOVE C'GET ' TO VERB
 GET DET ATEND 5
 MOVE C'RANDOM READ WORKED' TO PRT1-18
 PRINT
 SET PTA DET1
 SET PTA DOWN 2
 MOVE DET1 TO PRT1 PTA1-2-B
 PRINT DOUBLE SPACED
 GET DET ATEND 5
 MOVE DET1 TO PRT1 PTA1-2-B
 PRINT

 * READ VSAM ESDS RANDOMLY USING SETGENKEY *

Examples 4–89

Example 33

 MOVE C'READING VSAM ESDS RANDOMLY' TO PRT1-26
 MOVE C'USING SETGENKEY AND GET' TO PRT28
 PRINT DOUBLE SPACED
 MOVE C'RBA = 10' TO PRT1
 PRINT
 MOVE P'10' TO RBA
 MOVE C'SETGENKEY' TO VERB
 MOVE C'INF' TO FILE
 SETGENKEY INF USING RBA EQUAL ONERROR 5
 MOVE C'GET ' TO VERB
 GET INF ATEND 5
 MOVE C'RANDOM READ WORKED' TO PRT1-18
 PRINT
 SET PTA INF1
 SET PTA DOWN 2
 MOVE INF1 TO PRT1 PTA1-2-B
 PRINT DOUBLE SPACED
 GET INF ATEND 5
 MOVE INF1 TO PRT1 PTA1-2-B
 PRINT
 MOVE C'END OF TEST' TO PRT1-11
 PRINT TRIPLE SPACED
 GO TO EOJ

 * VSAM ERROR *

5 MOVE C'*** VSAM ERROR ***' TO PRT1
 PRINT TRIPLE SPACED
 MOVE C'FILE =' TO PRT1-6
 MOVE FILE TO PRT8
 PRINT
 MOVE C'VERB =' TO PRT1-6
 MOVE VERB TO PRT8
 PRINT
 MOVE C'VAL253-255 =' TO PRT1-12
 MOVE VAL253-255 TO PRT14
 PRINT
 MOVE C'VSAM RC =' TO PRT1-9
 MOVE VAL247-247-B TO PRT11-13 0
 PRINT
 MOVE C'VSAM EC =' TO PRT1-9
 MOVE VAL248-248-B TO PRT11-13 0
 PRINT
 MOVE C'TEST TERMINATED' TO PRT1
 PRINT TRIPLE SPACED
 MOVE C'0016' TO VAL46-49
 GO TO EOJ
9999 END

4–90 VISION:Report Reference Guide

Example 34

Example 34

QUIKVSAM (KSDS) with Alternate Index, Using OPTION, OPEN/CLOSE, LOAD,
READ, GET-UPD, READ-UPD, ADD, GET, POINT, UPDATE, ERASE

This example is very similar to Example 32. The primary differences between
these two examples are that in this example, the VSAM file is a KSDS, and
QUIKVSAM is used, rather than native VSAM.

Prior to running the VISION:Report, an IDCAMS job similar to the following
was run (although the IDCAMS is a MVS job stream, most, if not all the
IDCAMS statements, would be identical under VSE).

DELETE KSDS.TEST CLUSTER
 SET MAXCC=0
 DEFINE CLUSTER (NAME(KSDS.TEST) -
 VOLUMES(volser) -
 RECORDSIZE(80 80) -
 KEYS(20 10) -
 INDEXED) -
 DATA (NAME(KSDS.TEST.DATA) -
 CISZ(512) -
 TRACKS(1 1)) -
 INDEX (NAME(KSDS.TEST.INDEX))
 REPRO INFILE(SYSUT1) -
 OUTFILE(KSDS.TEST)
 PRINT INFILE(KSDS.TEST) -
 CHARACTER
 DEFINE AIX (NAME(KSDS.TEST.AIX) -
 RELATE(KSDS.TEST) -
 VOLUMES(volser) -
 KEYS(10 0) -
 RECSZ(128 256) -
 TRACKS(1 1) -
 UPGRADE) -
 DATA (NAME(KSDS.TEST.AIX.DATA) -
 CISZ(1024)) -
 INDEX (NAME(KSDS.TEST.AIX.INDEX) -
 CISZ(512))
 DEFINE PATH (NAME(KSDS.TEST.PATH) -
 PATHENTRY(KSDS.TEST.AIX) -
 UPDATE)
 BLDINDEX INDATASET(KSDS.TEST) -
 OUTDATASET(KSDS.TEST.AIX) –
 INTERNALSORT

The input to build the KSDS file is as follows:

EEEEEEEEEETEST RECORD NUMBER 1
DDDDDDDDDDTEST RECORD NUMBER 2
CCCCCCCCCCTEST RECORD NUMBER 3
BBBBBBBBBBTEST RECORD NUMBER 4
AAAAAAAAAATEST RECORD NUMBER 5

Examples 4–91

Example 34

VSE JCL Example
// JOB SAMP34
// DLBL filename,'your.VISION.lib'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(lib.sublib)
// DLBL OFA,'KSDS.TEST.PATH',,VSAM
// DLBL OFB,'KSDS.TEST',,VSAM
// EXEC QUKBJOB,SIZE=512K
 ... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//SAMP34 JOB (800-0000,0000),'Example 35'
//STEP1 EXEC QJTEST
//QJ.SYSUT2 DD DSNAME=KSDS.TEST.PATH,DISP=SHR
//QJ.SYSUT3 DD DSNAME=KSDS.TEST,DISP=SHR
//QJ.SYSIN DD *
 ... VISION:Report statements as shown below
/*
//

VISION:Report Statements
OPTION SPIE=NO /* MVS only

* SAMP34: VSAM KSDS WITH ALTERNATE INDEX *
* USING QUIKVSAM. *

* VERBS USED: *
* OPEN GET *
* CLOSE OPTION *
* READ POINT *
* GET-UPD UPDATE *
* READ-UPD ERASE *
* ADD LOAD *

* OUTPUT FILES OFA, OFB, OFC, AND OFD ARE NOT USED. *
* INPUT FILES INF, DET, INC, AND IND ARE NOT USED. *
* *
* //SYSUT3 DD IS A NONEMPTY VSAM KSDS CLUSTER. (OFB) *
* *
* //SYSUT2 DD IS A PATH FOR AN ALTERNATE INDEX (OFA) *
* TO THE //SYSUT3 DD CLUSTER. *

 EQU WST-KEY WST1-10
 TRACE LAST5D
 TITLE '$IPLDAT$ QUIKVSAM KSDS ALTERNATE INDEX '
 TITLE 'TEST PAGE PG'

 * VSAM KSDS GET USING ALTERNATE INDEX *

4–92 VISION:Report Reference Guide

Example 34

 MOVE C'QUIKVSAM OPEN ALTERNATE INDEX PATH' TO PRT1
 PRINT
 MOVE LOVALUE TO SAV1-13
 MOVE SPACES TO SAV14-22
 CALL QUIKVSAM C'SYSUT2 ' C'OPEN' SAV1
 IF SAV8-9 NOT = LOVALUE
 MOVE C'OPEN' TO SAV14
 GO TO 5.
 MOVE C'QUIKVSAM GET' TO PRT1-12
 MOVE C'USING ALTERNATE INDEX' TO PRT14
 PRINT DOUBLE SPACED
 PRINT
1 CALL QUIKVSAM C'SYSUT2 ' C'GET' PRT1
 IF PRT1-10 = HIVALUE
 GO TO 2.
 IF SAV8-9 NOT = LOVALUE
 MOVE C'GET' TO SAV14
 GO TO 5.
 PRINT
 GO TO 1
2 MOVE SPACES TO PRT1-120
 MOVE C'END OF FILE SYSUT2' TO PRT1
 PRINT DOUBLE SPACED
 MOVE C'QUIKVSAM CLOSE' TO PRT1
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'CLOSE'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'CLOSE' TO SAV14
 GO TO 5.
 --
 * VSAM KSDS READ USING ALTERNATE INDEX *
 --
 MOVE C'QUIKVSAM OPTION ALTERNATE INDEX PATH' TO PRT1
 PRINT DOUBLE SPACED
 MOVE LOVALUE TO SAV1-13
 CALL QUIKVSAM C'SYSUT2 ' C'OPTION' SAV1
 IF SAV8-9 NOT = LOVALUE
 MOVE C'OPTION' TO SAV14
 GO TO 5.
 MOVE C'QUIKVSAM READ' TO PRT1-13
 MOVE C'USING ALTERNATE INDEX' TO PRT15
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = CCCCCCCCCC' TO PRT1-23
 PRINT
 MOVE C'CCCCCCCCCC' TO WST-KEY
 CALL QUIKVSAM C'SYSUT2 ' C'READ' PRT1 WST1 C'KEQ'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'READ' TO SAV14
 GO TO 5.
 PRINT DOUBLE SPACED

 * VSAM KSDS POINT USING ALTERNATE INDEX *

Examples 4–93

Example 34

 MOVE C'QUIKVSAM POINT' TO PRT1-14
 MOVE C'USING ALTERNATE INDEX' TO PRT16
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = BBBBBBBBBB' TO PRT1-23
 PRINT
 MOVE C'BBBBBBBBBB' TO WST-KEY
 CALL QUIKVSAM C'SYSUT2 ' C'POINT' WST1 C'KEQ'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'POINT' TO SAV14
 GO TO 5.
 MOVE C'QUIKVSAM GET' TO PRT1-12
 MOVE C'USING ALTERNATE INDEX' TO PRT14
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'GET' PRT1
 IF SAV8-9 NOT = LOVALUE
 MOVE C'GET' TO SAV14
 GO TO 5.
 PRINT DOUBLE SPACED
 MOVE C'QUIKVSAM GET-UPD' TO PRT1-16
 MOVE C'USING ALTERNATE INDEX' TO PRT18
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'GET-UPD' WST11
 IF SAV8-9 NOT = LOVALUE
 MOVE C'GET-UPD' TO SAV14
 GO TO 5.
 MOVE WST11-50 TO PRT1-40
 PRINT DOUBLE SPACED
 --
 * VSAM KSDS UPDATE USING ALTERNATE INDEX *
 --
 MOVE C'QUIKVSAM UPDATE' TO PRT1-15
 MOVE C'USING ALTERNATE INDEX' TO PRT17
 PRINT DOUBLE SPACED
 MOVE C' UPDATE ' TO WST41
 MOVE WST11-50 TO PRT1
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'UPDATE' WST11
 IF SAV8-9 NOT = LOVALUE
 MOVE C'UPDATE' TO SAV14
 GO TO 5.

 * VSAM KSDS ERASE USING ALTERNATE INDEX *

 MOVE C'QUIKVSAM READ-UPD' TO PRT1-17
 MOVE C'USING ALTERNATE INDEX' TO PRT19
 PRINT DOUBLE SPACED
 MOVE C'SEARCH KEY = BBBBBBBBBB' TO PRT1-23
 PRINT
 MOVE C'BBBBBBBBBB' TO WST-KEY
 CALL QUIKVSAM C'SYSUT2 ' C'READ-UPD' PRT1 WST1 C'KEQ'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'READ-UPD' TO SAV14
 GO TO 5.
 PRINT DOUBLE SPACED
 MOVE C'QUIKVSAM ERASE' TO PRT1-14
 MOVE C'USING ALTERNATE INDEX' TO PRT16
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'ERASE'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'ERASE' TO SAV14
 GO TO 5.

 * VSAM KSDS ADD USING ALTERNATE INDEX *

4–94 VISION:Report Reference Guide

Example 34

 MOVE C'QUIKVSAM ADD' TO PRT1-12
 MOVE C'USING ALTERNATE INDEX' TO PRT14
 PRINT DOUBLE SPACED
 MOVE C'D 9' TO WST11-20
 MOVE C'TEST RECORD NUMBER 0 ADD ' TO WST21
 MOVE P'40' TO SAV4-7-B
 MOVE WST11-50 TO PRT1
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'ADD' WST11
 IF SAV8-9 NOT = LOVALUE
 MOVE C'ADD' TO SAV14
 GO TO 5.
 --
 * VSAM KSDS LOAD USING ALTERNATE INDEX *
 --
 MOVE C'QUIKVSAM LOAD' TO PRT1-13
 MOVE C'USING ALTERNATE INDEX' TO PRT15
 PRINT DOUBLE SPACED
 MOVE C'# 9' TO WST11-20
 MOVE C'TEST RECORD NUMBER 6' TO WST21-40
 MOVE C' LOAD ' TO WST41-50
 MOVE P'40' TO SAV4-7-B
 MOVE WST11-50 TO PRT1-40
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'LOAD' WST11
 IF SAV8-9 NOT = LOVALUE
 MOVE C'LOAD' TO SAV14
 GO TO 5.
 MOVE C'QUIKVSAM CLOSE' TO PRT1-14
 MOVE C'ALTERNATE INDEX PATH' TO PRT16
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSUT2 ' C'CLOSE'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'CLOSE' TO SAV14
 GO TO 5.

 * VSAM KSDS GET USING PRIMARY KEY *

 MOVE C'QUIKVSAM OPEN BASE CLUSTER' TO PRT1
 PRINT DOUBLE SPACED
 MOVE LOVALUE TO SAV1-13
 CALL QUIKVSAM C'SYSUT3 ' C'OPEN' SAV1
 IF SAV8-9 NOT = LOVALUE
 MOVE C'OPEN' TO SAV14
 GO TO 5.
 MOVE C'QUIKVSAM GET' TO PRT1-12
 MOVE C'USING PRIMARY INDEX' TO PRT14
 PRINT DOUBLE SPACED
 PRINT
3 CALL QUIKVSAM C'SYSUT3 ' C'GET' PRT1
 IF PRT1-10 = HIVALUE
 GO TO 4.
 IF SAV8-9 NOT = LOVALUE
 MOVE C'GET' TO SAV14
 GO TO 5.
 PRINT
 GO TO 3

Examples 4–95

Example 34

4 MOVE SPACES TO PRT1-120
 MOVE C'END OF FILE SYSUT3' TO PRT1
 PRINT DOUBLE SPACED
 MOVE C'QUIKVSAM CLOSE' TO PRT1
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'CLOSE'
 IF SAV8-9 NOT = LOVALUE
 MOVE C'CLOSE' TO SAV14
 GO TO 5.
 MOVE C'END OF TEST' TO PRT1-11
 PRINT TRIPLE SPACED
 MOVE ZERO TO VAL46-49
 GO TO EOJ

 * QUIKVSAM ERROR *

5 MOVE SPACES TO PRT1-120
 MOVE C'QUIKVSAM FAILED. FUNCTION =' TO PRT1-28
 MOVE SAV14-22 TO PRT30
 PRINT DOUBLE SPACED
 MOVE C'COMMUNICATION AREA DUMP:' TO PRT1
 PRINT DOUBLE SPACED
 PRINTHEX SAV1-13
 MOVE C'TEST TERMINATED' TO PRT1
 PRINT TRIPLE SPACED
 GO TO EOJ
9999 END

4–96 VISION:Report Reference Guide

Example 35

Example 35

Troubleshooting Problems

The following is an example of a program that utilizes the debugging facilities
of VISION:Report, with the one statement that is different between VSE and
MVS. See the section Troubleshooting and Memory Requirements in Chapter 5
for a more detailed information on troubleshooting, including suppression of
ABEND-AID if you have this product.

VSE Statement
OPTION STXITPC=NO /* Turn off VISION:Report program check-VSE only
.. VISION:Report Statements as shown below

MVS Statement
OPTION SPIE=NO /* Turn off VISION:Report program check-MVS only
.. VISION:Report Statements as shown below

VISION:Report Statements
OPTION TRACECT=1 /* Forces printing sequence numbers immed.
OPTION LISTOPT=YES /* Show what options running under
OPTION LIST=YES /* Ensure that VISION:Report statements print
*
* THE FOLLOWING "TRACE" STATEMENT HAS SEVERAL OPTIONS:
*
* ALL - TRACES EVERY STATEMENT THAT VISION:REPORT
* EXECUTES. WHEN THE TRACECT HAS BEEN REACHED,
* THE VISION:REPORT SEQUENCE NUMBER IS PRINTED.
* NOTE: THE AMOUNT OF PRINTING MAY BE EXCESSIVE,
* BUT SOMETIMES, THIS MAY BE THE ONLY
* METHOD. IF YOU KNOW WHERE THE PROBLEM
* EXISTS, YOU MAY PUT IN A TRACE STATEMENT
* THERE.
* LAST50 - CAUSES MEMORY TABLE OF VISION:REPORT INTERNAL
* SEQUENCE NUMBERS TO BE CREATED AND POSTED.
* NO TRACE PRINTING OCCURS ON THE PRINTER
* UNLESS THE PROGRAM ABORTS DUE TO A PROGRAM
* CHECK.
* NOTE: SOMETIMES THE TRACE TABLE MAY NOT BE
* PRINTED, DEPENDING UPON THE TYPE OF
* ABEND.
*
* OFF - TURNS OFF THE TRACE ROUTINE.
*
TRACE ALL /* Trace last50 may not do it!!
..
..
 GOTO EOJ
9999 END

Examples 4–97

Example 36

Example 36

Mixture of Native VSAM and CALL to QUIKVSAM, with Field Names Greater Than
14 Characters, and Forcing $PAGE$ to be Greater Than 6 Digits

The VISION:Report program would be similar to the following:

OPTION SRTSIZE=1024 /* ===> SRTSIZE=1024 IF MVS, SORTSIZ IF VSE
INMDISC52800352SSYS005 / IF VSE, REMOVE * AT POSITION 1
OFFVSAM / IF VSE, REMOVE * AT POSITION 1

 * SAMP36: *
 * *
 * TEST OF VARIOUS 16.0+ NEW FEATURES *
 * ---------------------------------- *
 * 1. MORE THAN 14 CHARACTERS FOR A FIELD-NAME. *
 * THIS APPEARS ON THE "EQU" AND "REPORT" VERB. *
 * 2. NATIVE VSAM AND CALLING QUIKVSAM WORKS. *
 * 3. $PAGE$ RESERVED WORD, ALLOWING FOR *
 * MORE THAN 6 DIGITS PAGE NUMBER. *
 * TEST IT BY FORCING PNR1-4-P TO BE 999998. *

 * LOGIC: *
 * *
 * RUN IDCAMS JOB TO DEFINE VSAM DATASET BEFORE *
 * RUNNING THIS VISION:REPORT JOB. *
 * *
 * *
 * SORT INPUT FILE INM BY ACCT-CODE (182-183) MAJOR *
 * AND ACCOUNT NUMBER (4-10). *
 * *
 * CREATE OUTPUT FILE, OFF, FROM INPUT FILE INM. *
 * USE "OPEN'S" ON BOTH FILES. *
 * *
 * TITLE CARD HAS "$PAGE$. *
 * MANUALLY MOVE KEY TO PRINT AREA AND PRINT IT. *
 * *
 * AT END OF FILE FOR INM, CLOSE INM AND OFF FILES. *
 * *
 * CALL QUIKVSAM TO PROCESS INPUT FILE, SYSINN. *
 * THIS IS REALLY THE ORIGINAL OUTPUT FILE, OFF. *
 * WE WILL OPEN, GET, AND CLOSE FILE SYSINN. *
 * *
 * FORCE PAGE NUMBER (PNR1-4-P) TO P'999998'. *
 * USE "PRINT REPORT" VERB TO DO REPORT. *
 * WE SHOULD SEE ROLL-OVER OF PAGE NUMBERS FROM *
 * 999998 TO 1,000,002 OR THEREABOUTS. *
 * *

* *
* NOTE: THE FOLLOWING IDCAMS JOB WILL NEED TO BE RUN *
* PRIOR TO EXECUTION OF THIS JOB. *
* *
* CHANGE THE ISPQJ.SAMP36 TO YOUR COMPANY'S *
* STANDARDS, AS WELL AS THE 'VOLSER'. *
* *

--
* *
* DELETE (ISPQJ.SAMP36.ARFILE.VSAM) CLUSTER *

4–98 VISION:Report Reference Guide

Example 36

* SET MAXCC=0 *
* DEFINE CLUSTER (NAME (ISPQJ.SAMP36.ARFILE.VSAM) - *
* VOL (VOLSER) - *
* RECSZ(352 352) KEY (9,210)) - *
* DATA (NAME (ISPQJ.SAMP36.ARFILE.VSAM.DATA) - *
* SPEED - *
* TRK (3,1) FREESPACE (20,5)) - *
* INDEX (NAME (ISPQJ.SAMP36.ARFILE.VSAM.INDEX)) *
* *
--
EQU THIS-IS-A-FULL-LENGTH-KEY WST1-20 /* 16.0+ ONLY
 SORT FILE INM ON INM182-183 INM4-10
 TITLE 'TEST OF PAGE $PAGES$ ' /* 16.0+ ONLY
* NOTE: $PAGES$ WILL ALLOW A 7-BYTE PAGE NUMBER !!!!
 REPORT THIS-IS-A-FULL-LENGTH-KEY (KEY) /* 16.0 + ONLY
 WST11-36 (NAME)
 TRACE LAST50
 OPEN OFF
 OPEN INM
 SET PTA OFF1
 SET PTA DOWN 2
 MOVE P'352' TO PTA1-2-B
 MOVE SPACES TO OFF1-352

010 GET INM ATEND 300
 MOVE INM1-210 TO OFF1-210
* BUILD KEY WITH NEXT 2 INSTRUCTIONS
 MOVE INM182-183 TO OFF211-212 /* ACCOUNT-CODE
 MOVE INM4-10 TO OFF213-219 /* ACCT
 MOVE INM220-352 TO OFF220-352 /* REST OF IT

 MOVE OFF211-219 TO PRT1
 MOVE INM85-109 TO PRT30
 PRINT
 WRITE OFF ONERROR 200
 GOTO 010

200 MOVE C'====> ERROR DURING LOADING' TO PRT20
 MOVE OFF211-219 TO PRT1
 PRINT
 GOTO 010

300 MOVE C'END OF LOAD PHASE' TO PRT1
 PRINT
 MOVE C'SEQUENTIAL RETRIEVAL-USING QUIKVSAM' TO PRT1
 PRINT
* * * * * * * * * *
 MOVE P'999998' TO PNR1-4-P /* 16.0+ ONLY
* /* FORCE TO HIGH NUMBER,
* * * * * * * * * * /* SO WE CAN CHECK 7-DIGITS
 MOVE C'PAGE NUMBER' TO PRT1
 PRINT
 CLOSE INM
 MOVE C'CLOSE INM' TO PRT1
 PRINT
 CLOSE OFF
 MOVE C'CLOSE OFF' TO PRT1
 PRINT
* NOTE: MIXING NATIVE VSAM WITH QUIKVSAM /* 16.0+ ONLY
 CALL QUIKVSAM C'SYSINN ' C'OPEN' SAV1
*
 MOVE C'CALL QUIKVSAM W/SYSINN' TO PRT1
 PRINT
 IF SAV8-9 NOT = LOVALUE
 MOVE C'OPEN ERROR' TO PRT1

Examples 4–99

Example 36

 PRINT
 GO TO EOJ.
320
 CALL QUIKVSAM C'SYSINN ' C'GET ' WST1
 IF WST1-10 = HIVALUE
 GO TO 400.
 IF SAV8-9 NOT = LOVALUE
 MOVE C'GET ERROR' TO SAV14
 PRINT
 GO TO EOJ.
 PRINT REPORT
 GOTO 320
400
 MOVE C'END OF FILE USING QUIKVSAM SEQ RETRIEVAL' TO PRT1
 PRINT DOUBLE SPACED
 MOVE C'QUIKVSAM CLOSE' TO PRT1
 PRINT DOUBLE SPACED
 CALL QUIKVSAM C'SYSINN ' C'CLOSE' SAV1
 GOTO EOJ
9999END

4–100 VISION:Report Reference Guide

Example 37

Example 37

Various Usages of IF (Nested IF, IF with Parentheses, IF/ELSE/ENDIF) and Bit
Manipulation Instructions (such as AND, OR, XOR, TRAN, TRNT)

The VISION:Report program would be similar to the following:

OPTION SEQCHK=NO
OPTION IFNUM=YES
OPTION TRACECT=1,U336DMP=YES

* **
* *
* SAMP37: *
* TESTING OF FOLLOWING FUNCTIONS: *
* *
* OR, AND, XOR, TRAN, TRNT *
* IF ... W/NESTED IF *
* PARENTHESES *
* ELSE/ENDIF *
* *
* NOTE: ====> RUNS ONLY UNDER RELEASE 16.0+ !!!! <====== *
* *
* **
EQU ALL-FIELDS WST0
* FOR OR INSTRUCTION
EQU OR-FLDA (6) C'ABCDEF'
EQU OR-FLDB (6) X'303030303030'

EQU AND-FLDA (6) C'ABCDEF'
EQU AND-FLDB (6) X'BFBFBFBFBFBF'

EQU XOR-FLDA (6) X'304050607080'
EQU XOR-FLDB (6) X'303030303030'

EQU TRAN-FLDA (20) C'BLUEJAYS EAT PEANUTS'
EQU TRAN-FLDB (256)
EQU TRAN-FLDB /* REDEFINES
* 0 1 2 3 4 5 6 7 8 9 A B C D E F *
*
EQU FILLER (16) X'FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0' /* 0
EQU FILLER (16) X'EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0' /* 1
EQU FILLER (16) X'DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1D0' /* 2
EQU FILLER (16) X'CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0' /* 3
EQU FILLER (16) X'BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1B0' /* 4
EQU FILLER (16) X'AFAEADACABAAA9A8A7A6A5A4A3A2A1A0' /* 5
EQU FILLER (16) X'9F9E9D9C9B9A99989796959493929190' /* 6
EQU FILLER (16) X'8F8E8D8C8B8A89888786858483828180' /* 7
*
* 0 1 2 3 4 5 6 7 8 9 A B C D E F *
*
EQU FILLER (16) X'7F7E7D7C7B7A79787776757473727170' /* 8
EQU FILLER (16) X'6F6E6D6C6B6A69686766656463626160' /* 9
EQU FILLER (16) X'5F5E5D5C5B5A59585756555453525150' /* A
EQU FILLER (16) X'4F4E4D4C4B4A49484746454443424140' /* B
EQU FILLER (16) X'3F3E3D3C3B3A39383736353433323130' /* C
EQU FILLER (16) X'2F2E2D2C2B2A29282726252423222120' /* D
EQU FILLER (16) X'1F1E1D1C1B1A19181716151413121110' /* E
EQU FILLER (16) X'0F0E0D0C0B0A09080706050403020100' /* F
*
* 0 1 2 3 4 5 6 7 8 9 A B C D E F *

Examples 4–101

Example 37

EQU TRNT-FLDA (20) C'BLUEJAYS EAT PEANUTS'
EQU TRNT-FLDB (256)
EQU TRNT-FLDB
* 0 1 2 3 4 5 6 7 8 9 A B C D E F
*
EQU FILLER (16) X'00000000000000000000000000000000' /* 0
EQU FILLER (16) X'00000000000000000000000000000000' /* 1
EQU FILLER (16) X'00000000000000000000000000000000' /* 2
EQU FILLER (16) X'00000000000000000000000000000000' /* 3
EQU FILLER (16) X'00000000000000000000000000000000' /* 4
EQU FILLER (16) X'00000000000000000000000000000000' /* 5
EQU FILLER (16) X'00000000000000000000000000000000' /* 6
EQU FILLER (16) X'00000000000000000000000000000000' /* 7
EQU FILLER (16) X'00000000000000000000000000000000' /* 8
EQU FILLER (16) X'00000000000000000000000000000000' /* 9
EQU FILLER (16) X'00000000000000000000000000000000' /* A
EQU FILLER (16) X'00000000000000000000000000000000' /* B
EQU FILLER (16) X'00000000000100000000000000000000' /* C
EQU FILLER (16) X'00010000000200000000000000000000' /* D
EQU FILLER (16) X'00000000000000000000000000000000' /* E
EQU FILLER (16) X'00000000000000000000000000000000' /* F

EQU IF-FLDA (1)-P P'-1'
EQU IF-FLDB (2)-P P'-1'
EQU IF-FLDC (2)-P P'1'
EQU IF-FLDD (1)-P P'1'
EQU IF-FLDE (1)-P P'1'
EQU IF-FLDF (1)-P P'1'
EQU IF-FLDG (1)-P P'1'
EQU IF-FLDH (10) C'BLUEJAYS'
EQU IF-FLDI (4) C'UEJA'
EQU IF-FLDJ (4)-B X'00000009'
EQU IF-ABCD (4) C'ABCD'
EQU IF-NAME (4) C'1234'

**
* ===> SAMPLE OF "OR" INSTRUCTION
**

 MOVE C'"OR " INSTRUCTION' TO PRT1
 PRINT
 OR OR-FLDA WITH OR-FLDB
 PRINTHEX OR-FLDA
 PRINTHEX VAL223
*
* END OF 'OR' EXAMPLE
*
**
* ===> SAMPLE OF "AND" INSTRUCTION
**

 MOVE C'"AND " INSTRUCTION' TO PRT1
 PRINT
 AND AND-FLDA WITH AND-FLDB
 PRINTHEX AND-FLDA
 PRINTHEX VAL223
*
* END OF 'AND' EXAMPLE
*
**
* ===> SAMPLE OF "XOR" INSTRUCTION
**

 MOVE C'"XOR " INSTRUCTION' TO PRT1

4–102 VISION:Report Reference Guide

Example 37

 PRINT
 XOR XOR-FLDA WITH XOR-FLDB
 PRINTHEX XOR-FLDA
 PRINTHEX VAL223
*
* END OF 'XOR' EXAMPLE
*
**
* ===> SAMPLE OF "TRAN" INSTRUCTION
**

* * * * *
* SHOULD GET THIS:
*
* WSTXX-XX
* 32132311B331B2332111
* DCBAEE7DFAECF8AEABCD
* 01..05...10...15...20
*
* * * * *
 MOVE C'"TRAN" INSTRUCTION' TO PRT1
 PRINT
 MOVE C'SHOULD GET THIS:' TO PRT1
 PRINT
 MOVE C'WSTXX-XX' TO PRT17
 PRINT
 MOVE C'32132311B331B2332111' TO PRT26
 PRINT
 MOVE C'DCBAEE7DFAECF8AEABCD' TO PRT26
 PRINT
 MOVE C' 01..05...10...15...20' TO PRT24
 PRINT
 MOVE C'GOT THESE RESULTS:' TO PRT1
 PRINT

 TRAN TRAN-FLDA WITH TRAN-FLDB
 PRINTHEX TRAN-FLDA
**
* ===> SAMPLE OF "TRNT" INSTRUCTION
**

*
* SCANS UNTIL THE 'E' IN BLUEJAY IS FOUND AND STOPS TEST.

 MOVE C'"TRNT" INSTRUCTION' TO PRT1
 PRINT
 MOVE C'PTR1-1 SHOULD GET A X"C5" OR E' TO PRT1
 PRINT
 MOVE C'VAL224-228 SHOULD GET X"0100000004" ' TO PRT1
 PRINT

 TRNT TRNT-FLDA WITH TRNT-FLDB
 PRINTHEX TRNT-FLDA
 PRINTHEX PTR1
 PRINTHEX VAL224-228
*
* END OF 'TRNT' EXAMPLE
*
**
* ===> SAMPLE OF "IF" INSTRUCTION
* WITH:
* NESTED IF
* IF WITH PARENTHESES
* IF /ELSE/ENDIF
**

Examples 4–103

Example 37

 MOVE C'"IF: NESTED/PARENTHESES/IF/ELSE/ENDIF" ' TO PRT1
 PRINT
 IF IF-FLDA = IF-FLDB
 MOVE C'A = B' TO PRT1
 IF (IF-FLDC = IF-FLDD AND /* SHOULD GET
 IF-FLDD = IF-FLDE) /* SHOULD GET
 MOVE C'C=D=E' TO PRT10 /* SHOULD PRINT
 ELSE /* ELSE
 MOVE C'C NE D/E' TO PRT10 /* SHOULD NOT GET
 ENDIF
* NOTE: NOTHING FOLLOWING SHOULD EXECUTE!!!
 ELSE /* ELSE
*
 MOVE C'A NE B' TO PRT30 /* SHOULD NOT GET
 IF IF-FLDC = IF-FLDD
 MOVE C'C = D' TO PRT30 /* SHOULD NOT GET
 ELSE
 MOVE C'C NE D' TO PRT30 /* SHOULD NOT GET
 ENDIF
 ENDIF
 PRINT
 IF IF-NAME = C'1234'
 MOVE C'CHET' TO IF-NAME /* SHOULD GET
 ELSE
 MOVE C'LEE ' TO IF-NAME /* SHOULD NOT GET
 ENDIF
 PRINTHEX IF-NAME
 GOTO EOJ
9999END

4–104 VISION:Report Reference Guide

Examples 38A and 38B

Examples 38A and 38B

IF Statement with Test Under Mask Operands
 --
 * EXAMPLE 38A: *
 * NOTE: RUNS ONLY UNDER 16.0+ *
 * *
 * IFTMSK1: *
 * TEST OF "IF" VERB WITH VARIOUS TEST MASKS. *
 * TEST UNDER MASK BY SPECIFYING A FIELD SIZE *
 * OF ONE BYTE AND THE FOLLOWING RELATIONAL *
 * OPERATORS: *
 * TMO: ONES *
 * TMZ: ZEROS *
 * TMNZ: NOT ZERO *
 * TMM: MIXED *
 * *
 --

EQU FILLER WST0 /* STARTING POINT
EQU FLDA (2)
EQU FLDA /* REDEFINES
EQU FLDB (1) X'A6' /* 1010 0110
EQU FLDC (1) X'35' /* 0011 0101
 TITLE 'IFTMSK1: FIELD SIZE OF ONE BYTE'

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST1 TRUE ' TO PRT30
 PRINT
 IF FLDB TMO X'80'
 MOVE C'TEST1 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST2 FALSE ' TO PRT30
 PRINT
 IF FLDC TMO X'80'
 MOVE C'TEST2 TRUE' TO PRT10
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDC TMO X'A6'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST4 TRUE ' TO PRT30
 PRINT
 IF FLDB TMO X'A6'
 MOVE C'TEST4 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE

Examples 4–105

Examples 38A and 38B

 MOVE C'TEST4 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST1 FALSE ' TO PRT30
 PRINT
 IF FLDB TMZ X'80'
 MOVE C'TEST1 TRUE' TO PRT10
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST2 TRUE ' TO PRT30
 PRINT
 IF FLDC TMZ X'40'
 MOVE C'TEST2 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDB TMZ X'A6'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST4 FALSE ' TO PRT30
 PRINT
 IF FLDC TMZ X'A6'
 MOVE C'TEST4 TRUE' TO PRT10
 ELSE
 MOVE C'TEST4 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST1 TRUE ' TO PRT30
 PRINT
 IF FLDB TMNZ X'42'
 MOVE C'TEST1 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST2 TRUE ' TO PRT30
 PRINT
 IF FLDC TMNZ X'14'
 MOVE C'TEST2 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1

4–106 VISION:Report Reference Guide

Examples 38A and 38B

 MOVE C'TMNZ TEST3 TRUE ' TO PRT30
 PRINT
 IF FLDB TMNZ X'A6'
 MOVE C'TEST3 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST4 FALSE ' TO PRT30
 PRINT
 IF FLDC TMNZ X'40'
 MOVE C'TEST4 TRUE' TO PRT10
 ELSE
 MOVE C'TEST4 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST1 FALSE ' TO PRT30
 PRINT
 IF FLDB TMM X'40'
 MOVE C'TEST1 TRUE' TO PRT10
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST2 FALSE ' TO PRT30
 PRINT
 IF FLDC TMM X'01'
 MOVE C'TEST2 TRUE' TO PRT10
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDB TMM X'A6'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST4 TRUE ' TO PRT30
 PRINT
 IF FLDC TMM X'A6'
 MOVE C'TEST3 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10
 ENDIF
 PRINT

 GOTO EOJ
9999END

Examples 4–107

Examples 38A and 38B

 --
 * EXAMPLE 38B: *
 * NOTE: RUNS ONLY UNDER 16.0+ *
 * *
 * IFTMSK2: *
 * TEST UNDER MASK LOW BY SPECIFYING A FIELD *
 * SIZE OF 2 BYTES AND THE FOLLOWING RELATIONAL. *
 * OPERATORS: *
 * TMO: ONES *
 * TMZ: ZEROS *
 * TMNZ: NOT ZERO *
 * TMM: MIXED AND LEFTMOST BIT IS ZERO *
 * TMP: MIXED AND LEFTMOST BIT IS ONE *
 * *
 --

EQU FILLER WST0 /* STARTING POINT
EQU FLDA (2)
EQU FLDA /* REDEFINES
EQU FLDB (1) X'A6' /* 1010 0110
EQU FLDC (1) X'35' /* 0011 0101
 TITLE 'IFTMSK2: FIELD SIZE OF TWO BYTES'

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST1 FALSE ' TO PRT30
 PRINT
 IF FLDA TMO X'4211'
 MOVE C'TEST1 TRUE' TO PRT10
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST2 TRUE ' TO PRT30
 PRINT
 IF FLDA TMO X'2020'
 MOVE C'TEST2 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMO TEST3 TRUE ' TO PRT30
 PRINT
 IF FLDA TMO X'A635'
 MOVE C'TEST3 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST1 FALSE ' TO PRT30
 PRINT
 IF FLDA TMZ X'2020'
 MOVE C'TEST1 TRUE' TO PRT10
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST2 TRUE ' TO PRT30

4–108 VISION:Report Reference Guide

Examples 38A and 38B

 PRINT
 IF FLDA TMZ X'4040'
 MOVE C'TEST2 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMZ TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDA TMZ X'A635'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST1 TRUE ' TO PRT30
 PRINT
 IF FLDA TMNZ X'4210'
 MOVE C'TEST1 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST2 TRUE ' TO PRT30
 PRINT
 IF FLDA TMNZ X'1414'
 MOVE C'TEST2 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMNZ TEST3 TRUE ' TO PRT30
 PRINT
 IF FLDA TMNZ X'A635'
 MOVE C'TEST3 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST1 FALSE ' TO PRT30
 PRINT
 IF FLDA TMM X'0605'
 MOVE C'TEST1 TRUE' TO PRT10
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST2 FALSE ' TO PRT30
 PRINT
 IF FLDA TMM X'A030'
 MOVE C'TEST2 TRUE' TO PRT10
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION

Examples 4–109

Examples 38A and 38B

 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMM TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDA TMM X'A635'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMP TEST1 TRUE ' TO PRT30
 PRINT
 IF FLDA TMP X'8040'
 MOVE C'TEST1 TRUE' TO PRT10 /* SHOULD GET THIS CONDITION
 ELSE
 MOVE C'TEST1 FALSE' TO PRT10
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMP TEST2 FALSE ' TO PRT30
 PRINT
 IF FLDA TMP X'1010'
 MOVE C'TEST2 TRUE' TO PRT10
 ELSE
 MOVE C'TEST2 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 MOVE C'===> SHOULD GET FOLLOWING:' TO PRT1
 MOVE C'TMP TEST3 FALSE ' TO PRT30
 PRINT
 IF FLDA TMP X'A635'
 MOVE C'TEST3 TRUE' TO PRT10
 ELSE
 MOVE C'TEST3 FALSE' TO PRT10 /* SHOULD GET THIS CONDITION
 ENDIF
 PRINT

 GOTO EOJ
9999END

4–110 VISION:Report Reference Guide

Chapter

5
Troubleshooting and Memory
Requirements

Troubleshooting and Memory Requirements
VISION:Report contains debugging facilities to help you troubleshoot a
program. This section contains information about program checks and how to
report a problem to Technical Support (see the section Contacting Computer
Associates in Chapter 1 for more information).

See the section Examples in Chapter 4 for an example of trouble shooting a
VISION:Report program.

Program Check Routine

VISION:Report causes a program check routine to be called and executed when
a program check occurs under the following conditions:

■ VSE or MVS system supports the program check option.

■ VSE VISION:Report user has OPTION STXITPC=YES.

■ MVS VISION:Report user has OPTION SPIE=YES.

The program check routine produces the following results:

PROGRAM CHECK AT ADDRESS NNNNNN OCCURRED, CAUSE WAS

The message above appears on the printer and the system console. The message
is slightly different for MVS and VSE.

All active VISION:Report areas are hex-printed on the printer. For example: you
are reading two files, using working storage, printing, punching, and writing
three output files. The following areas are hex-printed.

INF DET WST

PRT PUN OFA

OFB OFC VAL

Troubleshooting and Memory Requirements 5–1

Troubleshooting and Memory Requirements

If you have a TRACE ALL or a TRACE LAST50 active for the entire program,
the trace output assists you in identifying which statement caused the program
check. Since all active areas are hex-printed, you have sufficient data to identify
the cause of your program check to assist you in determining what to do in
order to avoid it.

Warning: Since VISION:Report uses the VSE STXITPC and the MVS ESPIE
macros to accomplish the previous, do not execute these macros in a
subroutine that VISION:Report calls. You can avoid the problem in MVS
with the option SUBSPIE=NO, but it can be costly in terms of execution
time.

Reporting Problems

Prior to calling Technical Support for assistance, have the following information
available by using the procedures indicated.

Within the VISION:Report program, ensure that you specify the following
statements:

Options:

SPIE=NO MVS only

STXITPC=NO VSE only

LISTOPT=YES

TRACECT=1 Use to obtain a trace line of sequence number executed.

Omit this if the trace is very lengthy, and turn the trace

on when you anticipate where the problem occurs.

Example
OPTION STXITPC=NO,LISTOPT=YES,TRACECT=1

Execute the TRACE LAST50 statement once in the mainline of the program.
This resolves most problems. Use TRACE ALL in rare circumstances; it can
produce a voluminous amount of paper. If you know where or when the
problem occurs, place the TRACE ALL shortly before the problem area to
reduce the amount of tracing required.

■ Ensure that you list the entire job stream as it appears during execution,
including all JCL, VISION:Report program, console messages, printouts,
and dumps.

If you are a VSE user with NOLOG as a standard option, add a // OPTION
LOG,PARTDUMP statement immediately after the // JOB statement. All
the JCL that follows shows up on SYSLST.

5–2 VISION:Report Reference Guide

Memory Dumps

■ If you use ABEND-AID, turn it off. It intercepts the program checks and
destroys a lot of information needed to debug the programs.

■ To turn off ABEND-AID for VSE, add the following JCL statement in your
job stream, with an asterisk followed by a blank (*) starting in position 1:

* AAPARM DIS

To turn off ABEND-AID for MVS, add the following JCL statement in your
job stream, starting in position 1:

//ABNLIGNR DD DUMMY

■ Other possibilities: If there are VSAM files involved, it is useful to have the
IDCAMS DEFINE statements printed. If there are output files involved, run
the IDCAMS DEFINE job immediately before the VISION:Report job. For
other files, it is useful to dump records around the time that the abend
occurs.

Have the VISION:Report release number, the operating system release
number, and any other pertinent information available.

■ If MVS, check with your systems programmer to ensure that the dump
produced contains all subpools, from 0 to 255 inclusive.

Memory Dumps
When a program check occurs, VISION:Report sets the ABEND or cancel code
to 3336. When the VISION:Report OPTION U336DMP=YES is in effect (with
SYSUDUMP DD on MVS), a memory dump of the partition is produced. No
memory dump is printed when U336DMP=NO is in effect.

Storage Requirements
In general, VISION:Report runs in a partition or region of 256K-512K,
depending on VISION:Report program size, table space, number of files, and
I/O buffers, as well as any interfaces or called programs. If you use the
VISION:Report Interface to DB2, in most cases a 1M partition or region is more
than adequate.

Troubleshooting and Memory Requirements 5–3

STMTS, GENSIZE, LITSIZE, and #EQU

STMTS, GENSIZE, LITSIZE, and #EQU
VISION:Report automatically attempts to dynamically obtain main storage in
the partition or region if it is available. The STMTS, GENSIZE, LITSIZE, and
#EQU option parameters, along with CALLCT and CALLSZ, are available for
upward compatibility, but are no longer required. Previous releases of
VISION:Report required that these parameters have specific limits and during
the compilation stage. If you exceeded these limits, VISION:Report issued
diagnostic messages and execution was not attempted.

Imperative statements generate one for one or more machine instructions.

Data and Table Space

VSE

The VSE user has the partition size less, approximately 64K for VISION:Report
available for file I/O, file work areas, table loading space, and called
subroutines. This availability can vary slightly between releases.

MVS

Use GETMAIN statements acquire I/O areas and table loading areas. The MVS
user has the partition size less, approximately 64K for VISION:Report available
for file I/O, file buffers, table loading space, and called subroutines.

File Sizes
MVS block size limit is 32,760 and record size is limited to 32,760 unless the
format is variable spanned. VSE block size limit is 32,767. Record size limit for
VSE is 32,767.

I/O Areas No Buffering Buffering

Fixed files - sum of block sizes Times 1 Times BF

Variable Files – sum of block sizes Times 1 Times BF

plus record sizes Times 1 Times BF

BF=2 for VSE, BF=5 normally for MVS or installation standard or DD buffers
override.

5–4 VISION:Report Reference Guide

Chapter

6
Optional Material

Optional Material
Check with the system programmer who installed VISION:Report to ensure
these materials were installed. For a description of the installation procedures
for the MVS and VSE optional material, refer to the VISION:Report Installation
Guide. Unless otherwise specified, the identifier or routine is applicable to both
MVS and VSE.

Identifier Routine or Program Function

DBOMPA (QJDBOMP) (VSE only) DBOMP Interface

LIBR**** (VSE only) CA-Librarian Assistance

QJCOBCVT Convert COBOL copybooks to
VISION:Report statements.

QJCOMREG (VSE only) Subroutine to Access COMREG Area

QJEPRNT VISION:Report to List Edit Masks

QJERAND Random Number generator

QJJOBCOM (VSE only) Subroutine to Access JOBCOM Area

QJPUNINT (VSE only) 3525 Punch/Interprets Subroutine

QUIKDATE, QUIKDATT Date Calculation

QUIKDPRT Print user date table

QUIKFLOP (VSE only) 3540 Floppy Disk Subroutine

QUIKIDMS (User must have a
license)

CA-IDMS/DB Access Interface

QUIKILIB (MVS only) CA-Librarian Interface Assistance

QUIKDLI (VSE only)
QUIKIMS (MVS only)
(User must have a license)

IMS-DL/I Interfaces

Optional Material 6–1

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)

Identifier Routine or Program Function

QUIKINCL (VSE only) Source Statement Library Routine

QUIKIPAN (MVS only) CA-Panvalet Subroutine

QUIKIPDS (MVS only) PDS Include Subroutine

QUIKISAM (MVS only) MVS ISAM Subroutine

QUIKISAM (VSE only) VSE ISAM Macro

QUIKMOVE Variable/Undefined Move Routine

QUIKPDS (MVS only) PDS Routine

QUIKRPT Multiple Reports Processor

QUIKTABL Automated Tabling Routine

QUIKTIME Time Subroutine

QUIKTRAN ASCII/EBCDIC Translator

QUIKTRNT(MVS only)
QUKBTRN (VSE only)

Translate Table

QUIKVEQU EQU Statements for VAL Area

QUKBLIB (VSE only) VSE Library Interface

TOTAL TOTAL Interface

TOTAL4 TOTAL4 Interface

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)
QJDBOMP allows you to access your DBOMP databases. A description of the
calling sequences for Master File Processing, Chain File Processing, and Closing
Files follows.

Call Format for Master File Processing
VERB PHASENAME OP1 OP2 OP3 OP4

CALL QJDBOMP AREA1 FILE PROCESS AREA2

6–2 VISION:Report Reference Guide

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)

Operands

■ Address of the VISION:Report return area. Can be any unused I/O area if
defined by the I/O parameter statement and the symbolic unit assigned to
ignore (such as, INF).

■ Name of the master file to be processed as defined by the DEFM1 or DEFM2
macro (such as, C'DID$PNM').

■ Processing mode. The valid parameters are:
C'SEQ' Sequential processing
C'GEN' Generic (requires fourth parameter)
C'RAN' Random (requires fourth parameter)
C'UPD' Update.

■ Address of your search argument which can be read from trigger statement
or any other input (such as, INF9) or file.

Assume that the parameters for accessing the database have been generated into
the access module.

Example 1
INFCARD
 MOVE ZEROES TO WST1-4-P /* Initialize update CTR.
 GET /* Read data statement.
020 CALL QJBDOMP SAV1 C'DID$PNM' C'SEQ'
 * /* Read master file.
 IF SAV4-10 IS HIVALUE /* Test for end of file.
 GO TO 120.
 IF SAV5-7 NOT EQ C'945' /* Is record to be updated?
 GO TO 020.
 MOVE INF1-6 TO SAV93-96-P /* MOVE in effective date.
 MOVE ZEROES TO SAV97-100-P /* Initialize field.
 CALL QJDBOMP SAV1 C'DID$PNM' C'UPD'
 * /* Write updated record.
 ADD C'1' TO WST-4-P /* Count updates.
 GOTO 020
120 MOVE WST1-4-P TO WST18-31
 * /* Display update count.
 DISPLAY WST11-31
 CALL QJDBOMP C'CLOSE' /* Force last record to be
written.
 GOTO EOJ
999 END
051575
/*
/&

Optional Material 6–3

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)

Example 2
// ASSGN SYS006,131
// ASSGN SYS011,IGN
// EXEC QUKBJOB
INFCARD
DETTAPE03000300SSYS011
 MOVE SPACES TO DET1-300 /* Blank return area.
 MOVE C'00' TO WST1-2 /* Initialize limiting counter.
030 GET /* Read statement input.
 DOHEADERS
 MOVE INF1-20 TO PRT1
 MOVE C'CARD INPUT' TO PRT25
 PRINT
040 IF INF1 EQ C'R'
 GOTO 640. /* Go to the random routine.
 IF INF1 EQ C'G'
 GOTO 830. /* Try the generic routine.
060 CALL QJDBOMP DET1 C'DID$PNM' C'SEQ'
 * 1 2 3 4
 *
 * 1 Module name called
 * 2 VISION:Report return area
 * 3 Master file to be referenced
 * 4 Processing mode
 *
 IF DET5-7 EQ X'FFFFFF' /* Key field test for end of file.
 GOTO EOJ.
 PRINT /* Force line between groups.
 MOVE C'MASTER' TO PRT1 /* Format PRINT line.
 MOVE DET5-23 TO PRT1
 MOVE DET57-86 to PRT10
 MOVE DET55-56 TO PRT65
 MOVE DET87-94 TO PRT70
 PRINT
215 EXIT
 ADD C'1' TO WST1-2 /* Count masters read.
 IF WST1-2 EQ C'25' /* Had enough?
 MOVE ZEROES TO WST1-2 /* Reset counter.
 GOTO 030. /*Yes- try for another trigger statement.
 IF DET24-27 EQ C'END.' /* Any product structure records?
 GOTO 060. /* No- go get next master.
 IF DET44-47 EQ C'END.' /* Any routing records?
 GOTO 480. /* No- continue with prod str chase.
 *
300 CALL QJDBOMP DET101 C'CHN' C'DID$PNM' C'DID$MRT'
 * 1 2 3 4 5
 *
 * 1 Module name called
 * 2 VISION:Report return area Note: Print DET past mstr return area.
 * 3 Process a chain chase This will hold mstr in your
 * 4 Name of master file work area.
 *
 IF DET101-103 EQ C'EOC' /* End of chain indicator.
 GOTO 480.
 MOVE C'RTG' TP PRT4
 MOVE DET106-109 TO PRT10 /* Seq number.
 MOVE DET132-193 TO PRT20 /* Cost, description & tool number.
 PRINT
 GOTO 300 /* Continue routing chase.
 *
 * Prod structure routine
 *

6–4 VISION:Report Reference Guide

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)

480 CALL QJDBOMP DET1 C'CHN' C'DID$PNM' C'DID$PST'
 * 1 2 3 4 5
 *
 * 1 Module name called
 * 2 VISION:Report return area Note: For product structure clause
 * 3 Process a chain file component master is returned to
 * 4 Name of master file addr specified and chain record
 * 5 Name of chain file is returned at master length +1.
 *
 IF DET101-103 EQ 'EOC' /* End of chain.
 GOTO 060.
 MOVE C'PROD STR' TO PRT4
 PERFORM 170 THRU 215 /* Why code it twice?
 GOTO 480
 *
 * Random retrieval
 *
640 CALL QJDBOMP DET1 C'DID$PNM' C'RAN' INF2
 * 1 2 3 4 5
 *
 * 1 Module name called
 * 2 Return area
 * 3 Master to be read
 * 4 Processing mode
 * 5 Address of user's random key (read from card this trip)
 *
 IF DET5 EQ C'*' /* "No hit" indicator.
 MOVE INF1-20 TO PRT1
 MOVE C'RANDOM READ NO HIT' TO PRT22
 PRINT
 GOTO 030.
 MOVE C'RANDOM' TO PRT4
 PERFORM 170 THRU 215
 GOTO 030
 *
 * Generic processing routine
 *
830 CALL QJDBOMP DET1 C'DID$PNM' C'GEN' INF2 /* Same format as random.
 IF DET5-7 EQ X'FFFFFF'
 GOTO EOJ. /* Was it end of file?
 MOVE C'GENERIC' TO PRT4
 MOVE C'15' TO WST1-2 /* Reset CTR for 10 more reads.
 GOTO 170
999 END
R89214
 1 IS BLANK FOR SEQ
R 047465*
/*
/&

The first example is a module to initialize a field to packed zeros. The SAV area
is not needed for the application, so it was used as a DBOMP return area.

In the second example, the DET area was used as the VISION:Report return
area. This area was generated by using a DET I/O statement for the size of the
retrieved records and a // ASSGN SYSnnn, IGN where nnn is the symbolic unit
number used in the I/O statement, columns 20-22.

The VISION:Report return area must be equal to the length of the largest master
record plus the longest chain record to be retrieved.

Optional Material 6–5

DBOMPA (QJDBOMP) — DBOMP Interface (VSE Only)

The following indicators are returned to VISION:Report by the DBOMP
module:

■ End of File — high values (X'FF') are returned in the first six positions of the
master file key area.

■ End of Chain — EOC is returned in the first three positions of the chain file
work area.

■ No Record Found — asterisks (*) are returned in the first six positions of the
master file key area.

■ Generic read, no hit — the next record greater than the key furnished is
returned.

■ All other abnormal conditions force an abnormal termination.

Call Format for Chain File Processing
VERB PHASENAME OP1 OP2 OP3 OP4

CALL QJDBOMP AREA1 FILE PROCESS AREA2

Operands

■ Address of user-defined return area (such as, DET101). Product structure
retrievals return the component master at this address; the chain record is
returned at this address plus the length of the master. For routing retrieval,
the chain record is returned to this address.

■ C'CHN' is the only valid keyword.

■ Name of the master file (such as, C'DID$PNM').

■ Name of chain file (such as, C'DID$MRT').

Call Format for Closing the Files

All file open processing occurs automatically as required. CLOSE is required
only if you made an update to the file during processing. If an update was
made, you must execute the following before EOJ, where QJDBOMP is the name
of the module.

CALL QJDBOMP C'CLOSE'

6–6 VISION:Report Reference Guide

LIBR**** — CA-Librarian Interface Assistance (VSE Only)

LIBR**** — CA-Librarian Interface Assistance (VSE Only)
These programs are interfaces to CA-Librarian. The TLIBGET and DLIBGET
interfaces are for CA-Librarian releases prior to 3.8 only. As part of the
VISION:Report installation process, separate source and object modules exist
for CA-Librarian releases 3.8 and higher and for prior releases. Be sure to
consult the person who installed CA-Librarian to determine which release you
are using, as well as consulting the CA-Librarian documentation for full details.

There are several differences between CA-Librarian release 3.8 and prior
releases. Releases prior to 3.8 necessitated separate source (and object modules)
for obtaining members for tape and disk. Starting with release 3.8, tape and disk
accesses are incorporated into one module and allowed access to either tape or
disk using specific sequences. The primary differences involve changing some
fields in the source interface, which are documented in the Computer Associates
source interface program. More detailed explanations can be found in the CA-
Librarian Guide.

VISION:Report’s release tape default is disk access first — if it cannot find a
disk master, it will then look for a tape master. The default module name to
specify in your CALL statement remains DLIBGET in order to maintain
compatibility as much as possible. Determine what changes, if any, were made
to the Computer Associates interface and if the module name to be called has
been changed.

TLIBGET - Tape CA-Librarian GET & DLIBGET - Disk CA-Librarian GET

TLIBGET and DLIBGET are self-contained subroutines and can be entered by
the CALL statement from VISION:Report. These routines process the CA-
Librarian file (tape or disk) in module and/or ascending sequence, returning to
the user program one data unit at a time.

VERB PHASENAME OP1 OP2 OP3

CALL TLIBGET AREA1 AREA2 AREA3
 DLIBGET

Operands

■ An 8-byte area containing the selected module name or, if processing
sequentially, blanks. This area must be left-aligned with trailing spaces. The
module name or blank spaces must be placed into this area prior to all calls
requesting a new module.

For a tape master, modules can be retrieved in any order, but excessive tape
positioning can result if the modules are not requested in ascending
sequence.

Optional Material 6–7

LIBR**** — CA-Librarian Interface Assistance (VSE Only)

For disk masters, modules must always be selected either modularly
(module name specified) or sequentially (module name blank). If both
modes of selection are used in the same program, the results are
unpredictable.

■ A 115-byte area into which the called routine places the following:

Bytes Description

Bytes 1-80 Statement image

Bytes 81-88 Sequence number

Bytes 91-98 Date statement was added to master-MM/DD/YY

Bytes 101-108 Module name

Bytes 109-112 Module password

Bytes 113-115 Number of statements in module (packed decimal)

■ When end of module is reached, this area is set to low values. When
processing sequentially (requesting module is blank) and end of file reached
or when processing modularly (requesting module is non-blank) and
module cannot be found, this area is set to high values.

■ Any non-blank character in this 1-byte area causes the called program to
retrieve another module, whether sequentially or by module name. It is
your responsibility to ensure the validity of this area.

When processing the tape master or backup file, you must include two assign
statements in your VISION:Report JCL to unassign the cycle-file (if no checking
for latest tape master is wanted) and to assign the tape file to a tape drive.

// ASSGN SYSnnn,UA Cycle file

// ASSGN SYSnnn,CUU Tape unit

6–8 VISION:Report Reference Guide

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements

QJCOBCVT — Convert COBOL copybooks to VISION:Report
Statements

QJCOBCVT is a standalone program that enables a user to convert COBOL
copybooks of data fields into VISION:Report EQU statements. This program is a
separate utility program that a user would run outside of a VISION:Report
program. After conversion, the ouput could then be placed into an Operating
System’s COPY library, or other librarian system such as CA-PANVALET, that
can be subsequently accessed by a VISION:Report program.

There are certain COBOL statements that VISION:Report cannot translate. They
include:

■ COBOL Level 66

■ COBOL Level 88

■ OCCURS clauses

■ Edit mask

In some cases, the location can be determined, but the corresponding logic
cannot be executed. For example:

EQU OCCURS-FIELD1X WST689-693 /* OCCURS !!
EQU OUT-OF-BAL-IO-ACCUM-1 WST 1799-1816 /* EDIT MASK !!

In the above examples, these statements were appended with a /* at the end of
the EQU statements, warning that an OCCURS clause or an edit mask may not
be correct and will require examination and modification.

In the example below, asterisks (*) are placed in coloumn 1 for the Level 88
statements to indicate that they could not be converted, and some logic may
have to be added.

* 88 POLICY-IS-D-W-OR-R VALUE `D’`W’W `R’.
* 88 P21-STAT-GOOD VALUE `G’.

Note: All statements marked with an asterisk (*) or a /* must be examined by
the user to verify its correctness.

In all cases, an output “punched” file would be produced, and the user would
have to examine the statements and it is the responsibility of the user to ensure
that the conversion was successful.

Note: FD data names are not processed. Only data names in
WORKING-STORAGE SECTION are processed, and are put in WST.

Prior to executing QJCOBCVT, you need to compile the COBOL program, and
the output listing needs to be available on disk (record length 133 bytes, format
FBA).

Optional Material 6–9

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements

Note: The COBOL program must compile without errors, or return a code of 4
or less.

The option of MAP, whereby a Data Division Map is produced during COBOL
compilation time, is required. The listing for the WORKING-STORAGE
SECTION is also required.

The following is sample JCL for compiling a COBOL program.

MVS JCL
//COMPCOB1 JOB etc., COMPILE COBOL PROGRAM
//STEP1 EXEC PGM=IGYCRCTL,REGION=2M,
// PARM='ADV,MAP,TEST,RES,LIST'
//STEPLIB DD DSN=SYS1.COB2COMP,DISP=SHR
//SYSLIB DD DISP=SHR,DSN=CGL.COBCVRTR.COPYLIB
//SYSPRINT DD DISP=SHR,DSN=CGL.COBCVRTR.LIST133(COBOL1)
//SYSLIN DD DSNAME=&&SYSLIN,UNIT=SYSDA,
// DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2480)
//SYSPUNCH DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD DISP=SHR,DSN=CGL.COBCVRTR.COPYLIB(COBOL1)
/*
//

VSE JCL
* $$ JOB JNM=COMPCOB1,LDEST=(CGL)
* $$ LST CLASS=A,LST=SYSLST,DEST=(,CGL)
* $$ PUN CLASS=A,PUN=SYSPCH,DEST=(,CGL)
// JOB COMPCOB1
// DLBL QJPROC,'QJ.PROCLIB'
// EXTENT ,DOS004
// LIBDEF PROC,SEARCH=QJPROC.PROC
// EXEC PROC=QJTEST
// DLBL IJSYS06,'SYS006.TEMP',0
// EXTENT SYS006,DOS003,1,0,1,30
// ASSGN SYS006,DISK,VOL=DOS003,SHR
// DLBL IJSYS07,'SYS007.TEMP',0
// EXTENT SYS007,DOS003,1,0,1,30
// ASSGN SYS007,DISK,VOL=DOS003,SHR
// OPTION ERRS,SXREF,SYM,NODECK
// DLBL IJSYSLS,'CGL.COBCVRTR.LIST133’,99/366 SYSLST ASSIGNED TO DISK
// EXTENT SYSLST,DOS006,1,0,1,30
 ASSGN SYSLST,DISK,VOL=DOS006,SHR
// EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM='APOST,MAP'
 cobol source program
/*
/&
 CLOSE SYSLST,00E
* $$ EOJ

6–10 VISION:Report Reference Guide

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements

After compiling the COBOL program, you can then run QJCOBCVT. The
following is sample JCL:

MVS JCL
//QJCOBCVT JOB etc.
//RUNIT EXEC PGM=QJCOBCVT
//STEPLIB DD DISP=SHR,DSN=QJ.PROD.LOADLIB
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DISP=SHR,DSN=CGL.COBCVRTR.PUNCH(COBOL1) 80-byte OUTPUT FILE
//INPUT DD DISP=SHR,DSN=CGL.COBCVRTR.LIST133(COBOL1)
//* PRINT PUNCHED OUTPUT
//* NOTE: OPTIONAL STEP
//COPYIT EXEC PGM=IEBGENER,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=* DCB=(LRECL=125,BLKSIZE=3750,RECFM=VB)
//SYSUT1 DD DISP=SHR,DSN=CGL.COBCVRTR.PUNCH(COBOL1)
//

VSE JCL
* $$ JOB JNM=QJCOBCVT,CLASS=A,LDEST=(,CGL)
* $$ LST CLASS=A,LST=SYSLST,DEST=(,CGL)
* $$ PUN CLASS=A,PUN=SYSPCH,DEST=(,CGL)
// JOB QJCOBCVT
// DLBL INPUT,'CGL.COBCVRTR.LIST133',99/366
// EXTENT ,DOS006
// DLBL QJPROC,'QJ.PROCLIB'
// EXTENT ,DOS004
// LIBDEF PROC,SEARCH=QJPROC.PROC
// EXEC PROC=QJTEST
// EXEC QJCOBCVT,SIZE=512K
/*
/&
* $$ EOJ

After reviewing the punched output, make any necessary modifications and
place in a COPY library as input to VISION:Report.

Optional Parameters

On the EXEC statement of the program, QJCOBCVT, there are two optional
parameters that could be passed. These two optional parameters are:

Parameter 1: Storage name that user wishes to start at. This is a 3-byte
field.

 Examples: INF, OFA

 Default: WST

Optional Material 6–11

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements

Parameter 2: Increment value for offset of COBOL compiler listing output
within Data Division. Some compiler default is 7.

 Default: 24

 Below is a partial sample output from a COBOL compile
(note that each line does not show entire length):

1PP 5688-197 IBM COBOL for MVS and VM 1.2.0 COB2

 LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|

0/* COB2

 000006 000007 DATA DIVISION.

 000007 000008 WORKING-STORAGE SECTION.

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9

 000024 001800 01 MY-SAMPLE.

 000025 001900 05 MY-SAMPL-KEY.

 000026 002000 10 MY-SAMP-AUTONO.

 000027 002100 15 MY-SAMP-AUTO-INITIAL.

 000028 002200 20 MY-SAMP-AUTO-INIT-PRE PIC X(003). etc.

 000029 002300 20 MY-SAMP-AUTO-INIT-X PIC X.

 000030 002400 15 MY-SAMP-AUTO-NUMBER PIC X(006).

 000031 002500 05 MY-SAMP-OWNED-STATUS PIC X(001).

 000032 002600 88 ASSIGNED-AUTO VALUE 'A'.

 000033 002700 88 FREERUNNER-AUTO VALUE 'F'.

 000034 002800 88 LEASED-AUTO VALUE 'L'.

 000035 002900 88 OWNED-AUTO VALUE 'O'.

 000036 003000 05 MY-SAMP-MLG-TAB.

 000037 003100 10 MY-SAMP-MILEAGE-RATE-GROUP OCCURS 12 TIMES INDEXED BY

 000038 003200 MY-SAMP-INDEX-1 PIC S9(1)V9(4) COMP-3.

Notice that the important data really starts in position 25 of the listing, or after
the sequence number. This is the increment value for offset of COBOL compiler
listing output.

Messages

There are messages that may appear in the QJCOBCVT output. Many of these
are strictly warning messages, usually in conjunction with a statement that
cannot be processed by QJCOBCVT. Thus, you may have to manually change
whatever is required.

Below are the error messages, all prefixed with the constant “QJCOBCVT”, and
a brief description of the diagnostic when further explanation is necessary:

ERR001 CANNOT HANDLE THIS CLAUSE/LEVEL NUMBER (OR INVALID)

 This is either an invalid Level number, or more likely an 88 or similar level,
which cannot be processed. You will have to manually make changes within
a VISION:Report program if you wish to utilize this function in COBOL. If
88 or similar level, it will be made into a comment so you can still see the
original statement.

6–12 VISION:Report Reference Guide

QJCOBCVT — Convert COBOL copybooks to VISION:Report Statements

ERR002 A "9" MUST FOLLOW AN "S" OR "V", EG: S9(5) OR V999

ERR003 NO LENGTH FOUND

There seems to be a length missing from the statement. Please examine and
change if necessary.

ERR004 COMP-1 OR COMP-2 NOT SUPPORTED

ERR005 SYNC - NOT PROCESSED. SOME OUTPUT PRODUCED

QJCOBCVT does not handle this parameter. You may have to examine the
input/output statement and make whatever changes are required.

ERR006 LENGTH NOT GIVEN YET OR INVALID. SOME OUTPUT
PROCESSED

There seems to be a length missing, or invalid, from the statement. Please
examine and change if necessary.

ERR007 INDEX. PROCESSED SOME

QJCOBCVT does not handle this parameter. You may have to examine the
input/output statement and make whatever changes are required.

ERR008 DISPLAY-ST (ERLING) FOUND. PROCESSED SOME

QJCOBCVT does not handle this parameter. You may have to examine the
input/output statement and make whatever changes are required.

ERR009 PROBLEM WITHIN LENGTH OF NUMBER

The length of the field is probably invalid. You may have to examine the
input/output statement and make whatever changes are required.

ERR010 DATANAME LENGTH MAXIMUM EXCEEDED

There is a maximum of 34 for a dataname length. You may have to examine
the input/output statement and make whatever changes are required.

ERR011 LEVEL NUMBER INCORRECT - SKIPPING TO NEXT STATEMENT

Somehow, the level number (possibly within or underneath another level
number) is incorrect. You may have to examine the input/output statement
and make whatever changes are required.

ERR012 BIG TABLE EXCEEDED - JOB ABORTED

QJCOBCVT issues a Storage request to the operating system to process all
Data Division statements in memory. Presently, each storage request is for
1636 entries, each entry being 80 bytes. Six requests for storage are allowed,
for a total of 9,816 entries; if a seventh request is required, the above
message will appear.

There is a PCP available from Tech Support that will allow you to increase
this amount.

Optional Material 6–13

QJCOMREG —Subroutine to Access COMREG Area (VSE Only)

ERR013 EDIT MASK CANNOT BE HANDLED - SKIPPING TO NEXT STMT

QJCOBCVT does not handle edit masks. You may have to examine the
input/output statement and make whatever changes are required for
VISION:Report.

QJCOMREG —Subroutine to Access COMREG Area (VSE
Only)

QJCOMREG provides you with a convenient method of moving data from/to
the VSE user partition communication region, allowing you to pass information
between individual job steps.

VERB PHASENAME OP1 OP2
CALL QJCOMREG FLDDEF C'PUTCOM'
 OR
 C'GETCOM'

Operands

■ Any valid VISION:Report area in the standard format of VISION:Report
field definitions. This area is assumed to be 11 bytes long.

■ C'PUTCOM' puts the data in flddef into the user communication region,
replacing all 11 bytes.

■ C'GETCOM' retrieves the data from the user communication region and
places that information in flddef.

If neither C'PUTCOM' or C'GETCOM' is specified, C'GETCOM' is the
default.

The PUTCOM call does not automatically update @VAL-COMREG.

Examples
CALL QJCOMREG WST1 C'PUTCOM'

CALL QJCOMREG LAST-PROGRAM C'GETCOM'

CALL QJCOMREG LEN-LAST-RUN

CALL QJCOMREG INF21-31 C'PUTCOM'

6–14 VISION:Report Reference Guide

QJEPRNT — List Edit Masks

QJEPRNT — List Edit Masks
QJEPRNT lists the edit mask table in a format suitable for reference. It is
distributed as part of SAMPLIB.

The name of the module specified in the VISION:Report LOAD statement must
be changed to the name of the user edit mask table. In the SAMPLIB, check the
member, QJEPRNT, to ensure that the statement with sequence number 100 has
QUIKEMSK if MVS, and QUKBEMSK if VSE. When executing the member
QJEPRNT in MVS, add a SYSPRINT DD statement to your JCL.

QJERAND — Random Number Generator
QJERAND generates a positive random number. The routine provides a large
range with a low reoccurrence factor. The number ranges between 0 and 2 to the
31st power, unless it is limited by placing a restriction in the calling area. The
routine can be used under VSE and MVS; it is self-relocating, serially reusable,
and less than 2K long.

QJERAND is automatically installed during the VISION:Report installation
procedure.

When calling QJERAND, one data area pointer (consisting of two binary fields,
each four-bytes long) is required. The routine returns the generated number in
bytes 1 through 4 of this area. You can limit the range of the number by
specifying a restriction in positions 5 through 8 of the calling area. Below is an
example of a VISION:Report program invoking QJERAND, with an explanation.

OPTION LISTOPT=NO,STMTEND=80
 EQU PARMS WST1-8 /*Binary pointer
 EQU PARMS /*Redefines parms
 EQU COUNTEM WST101-104-P ZERO /*How many to generate?
 EQU RANDNO-RETURN WST1-4-B /*Random no. generated
 EQU RANDNO-LIMIT WST5-8-B /*Positions limit
 MOVE C'1234' TO RANDNO-LIMIT /*Limit to 4 positions
 MOVE C'RANDOM NUMBERS GENERATED' TO PRT60 /*Message text
 PRINT /*Print the message
100 CALL QJERAND PARMS /*Call generator module
 IF COUNTEM EQ P'12' /*Stop at 12 numbers
 GOTO EOJ. /*If counter = 12, stop
 ADD C'1' TO COUNTEM /*Increment the counter
 MOVE RANDNO-RETURN TO PRT69-72 /*Move number to print
 PRINT /*Print number generated
 GO TO 100 /*Generate next number

RANDNO-RETURN is the return area for the random number after the call.
You should always check to ensure that the number returned is non-zero.

RANDNO-LIMIT is the area that limits the range of the generated number.

Optional Material 6–15

QJJOBCOM — Subroutine to Access JOBCOM Area (VSE Only)

QJJOBCOM — Subroutine to Access JOBCOM Area (VSE
Only)

QJJOBCOM provides you with a convenient method of moving data (up to
256 bytes) from/to a VSE partition’s JOBCOM area, allowing you to
communicate between jobs or job steps within a partition.

VERB PHASENAME OP1 OP2 OP3

CALL QJJOBCOM C'GET' LENGTH LOCATION
 OR
 C'PUT'

Operands

■ A literal or VISION:Report area containing one of the following:

- 'GET' to read JOBCOM data

- 'PUT' to write JOBCOM data

■ Length of JOBCOM data to read or write, in either of the following formats:

- A 2-byte binary VISION:Report flddef (that is, WST1-2-B)

- A 2-byte hexadecimal literal (that is, X'0050')

The length must be in the range of 1 to 256 bytes decimal.

■ The location of the JOBCOM data. You can use any valid VISION:Report
Flddef that has sufficient length to contain the JOBCOM information.

Examples
CALL QJJOBCOM C'GET' X'0100' WST1

CALL QJJOBCOM C'GET' WST1-2-B WST11

CALL QJJOBCOM C'PUT' X'0064' WST1

Do not attempt to use this routine in a VISION:Report program running under
ICCF. The JOBCOM macro is not supported by ICCF and will cause
VISION:Report to have errors.

6–16 VISION:Report Reference Guide

QJPUNINT — 3525 Punch/Interpret Subroutine (VSE Only)

QJPUNINT — 3525 Punch/Interpret Subroutine (VSE Only)
QJPUNINT supports the model 3525 interpreting card punch with FUNC=I.
When using this subroutine, the punched card’s data length is assumed to be
80 bytes and is punched and interpreted on an 80/80 basis. QJPUNINT output
is directed to SYS005.

 VERB PHASENAME OP1

 CALL QJPUNINT FLDDEF

Operands

Location of the data (such as, INF1, WST101).

To close the card file and ensure proper closing and interpreting of the last card,
leave this operand blank.

Example
// JOB PUN-INT
// DLBL filename,'your.report.lib'
// EXTENT SYS001,vvvvvv
// LIBDEF *,SEARCH=(lib.sublib)
// ASSGN SYS005,CUU Assign 3525 device
// EXEC QUKBJOB
OPTION SEQCHK=NO
INFCARD
ATEND 200
100 GET /* Read input record.
 MOVE INF1-80 TO PRT-1 /* Move input to print file.
 PRINT /* PRINT it.
 CALL QJPUNINT INF1 /* Call program for punch/interpret.
 GOTO 100 /* Go get next.
*
200 CALL QJPUNINT /* CALL to CLOSE punch file.
 GOTO EOJ /* Stop run.
 END
.
. INF DATA
.
/*

Optional Material 6–17

QUIKDATE — Date Calculation

QUIKDATE — Date Calculation
QUIKDATE performs various date calculations and conversions. This routine
allows the year 2000 to follow the year 1999 by using a four-character length
year field. It converts dates from one format to another (two-character year to
four-character year), and adjusts a date forward or backward.

The routine consists of two parts: the actual processing program (QUIKDATE)
and the user date table (QUIKDATT).

For programs requiring a four-digit year, you must change source programs
and use the new version of QUIKDATE. No changes are required to currently
operating programs.

QUIKDATT

The user default date table, QUIKDATT, is used by the processing program in
many of the calculation and conversion routines. It has three portions: day
status, control information, and holiday dates table. Maintenance of the holiday
dates table is at your discretion. If you want to load a different dates table, see
Function 12 —Load another date table.

Day Status

The day status associates each of the seven days of the week with a normal
length of day value. Each day, numbered from 1 (Monday) to 7 (Sunday) has a
length of whole (10), half (05), or off (00) associated with it.

Control Information

The control information defines the length of a normal work week, the weekend
day, and default values for century (19 or 20) when a 2-character year is input
for processing.

Holiday Dates Table

The holiday dates table is maintained usually by the person who installs your
software products. It defines all days that are known to your organization as
holidays, assigning a value that reflects the length of the holiday, either a full
day (10) or a half day (05). It is possible to have more than one holiday dates
table with different names.

Customizing QUIKDATT is discussed in the installation materials. An example
is included to assist you in installing QUIKDATT.

6–18 VISION:Report Reference Guide

QUIKDATE — Date Calculation

QUIKDATE

The operands vary based on the function being performed. Each operand can be
either a VISION:Report field definition (in character format only) or a character
literal.

QUIKDATE provides the capability of specifying the first two characters of the
new four-character year. This capability is in the form of an optional parameter
for all functions using a two-character input date mask. This optional parameter
(19, 20) is used as input for a QUIKDATE function (01-11). This function can
produce output having a four-character year.

For all functions that have the optional parameter (for the century), the default
value can be overridden by the optional Windowing Technique parameters in
the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

CALL QUIKDATE FUNCTION OP1 OP2 OP3 OP4 OP5 OP6

Term Description

Function A two-character code indicating the function. A detailed list of each
function and its operands is included later in this section.

Operands

■ Usually, the date which QUIKDATE is to convert or base calculations. The
MASK operand describes the format of the date. The input date must
provide the entire date.

■ If Julian, YY and DDD must be present.

■ If Gregorian, MM, DD, and YY must be present.

■ Short forms are not supported for input dates.

■ This operand describes the format of the input date or converted date. The
following masks are valid for QUIKDATE:

Each mask must be followed by one or more spaces.

 MMDDYY DDMMYY YYMMDD MMDDYYYY YYYYDDD
 DDMMYYYY YYDDD MM/DD/YY MM/DD/YYYY YYYYMMDD
 DD/MM/YY YY/MM/DD DD/MM/YYYY YYYY/MM/DD MMYY

 MM is the month
DD is the day
YY is the two-character year
YYYY is the four-character year
DDD is the Julian day of the year

Optional Material 6–19

QUIKDATE — Date Calculation

Example
DATE=940131 MASK=C'YYMMDD '

DATE=04/21/93 MASK=C'MM/DD/YY '
DATE=19920410 MASK=C'YYYYMMDD '

■ This operand, required only by certain functions, contains the result of a
date calculation or conversion. The size of this area varies by function.

■ In Function 08, this is the number of days you want to add to or subtract
from the DATE. The adjust factor must be a five-character number if
positive or six characters with a leading minus sign. For example, C'00031'
adds 31 days to the DATE; C'-00031' subtracts 31 days from the date.

■ An optional operand for Function 07. This one-character operand represents
the day code (1 through 7) of the last day of the week. The default code is 7
(Sunday).

■ An optional operand for producing a four-character year. If you do not
specify this optional parameter, the value assigned is taken from the binary
flags described in the first invocation of the HOLIDAY macro. The value
specified should be either 19 or 20. All other functions are the same.
However, there are now 11 more date masks available for processing four-
character years. Functions 1 through 10 have one of these values: 4, 19, 20.
Function 11 has one of two values: 19, 20.

Value Description

 4 Four-character year input format or prefix default value is taken
from user dates table.

19 Two-character year prefix to expand an input date.

20 Two-character year prefix to expand an input date.

QUIKDATE Functions

This section details the QUIKDATE functions and each optional parameter.

Function 00 — Call QUIKDATE from a COBOL program
CALL 'QUIKDATE' USING FUNCTION RETURN-CODE

6–20 VISION:Report Reference Guide

QUIKDATE — Date Calculation

Example in COBOL program
01 QD-FUNC PIC XX VALUE ZEROES.
01 QD-RC PIC 9(4) VALUE ZEROES COMP.

CALL 'QUIKDATE' USING QD-FUNC QD-RC.

■ Only the Function and Return Code are required.

■ Function code must be a 2-character field of '00'.

■ Return Code is defined in COBOL as 9(4) COMP.

Note: If you are calling QUIKDATE from a COBOL program, this must be the
first function to QUIKDATE.

Function 01 — Convert Julian date to Calendar date
CALL QUIKDATE FUNCTION DATE OUTPUT RETURN OPTIONAL

 MASK AREA PARAMETER

Note: Each mask must be followed by one or more spaces.

For all functions that have the optional parameter (for the century),you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. Check with the person who installed VISION:Report at your
site to see which Windowing Technique parameters, if any, were chosen.

Example
CALL QUIKDATE C'01' C'93060' C'MMDDYYYY ' WST1 C'19'

You can only omit the optional parameter; all others are required. If you omit
the optional parameter, the Julian date is treated as being in the format YYDDD,
and the prefix value for the year portion of the date is taken from the control
information in the dates table. Definitions of the valid values are:

Value Description

 4 indicates a four-character Julian year input format.

19 the two-character year prefix to form a four-character date when
input year is two characters.

20 the two-character year prefix to form a four-character date when
input year is two characters.

If you input a four-character year date (optional parameter value is 4), and the
output mask consists of a two-character year, then the leading two characters of
the input year are truncated.

Optional Material 6–21

QUIKDATE — Date Calculation

The returned value is a maximum of ten characters.

Function 02 — Convert Calendar date to Julian date

Extend Julian date to a four-character year. Specify the values, 19 or 20, only
when the input mask is a two-character year.

CALL QUIKDATE FUNCTION DATE INPUT RETURN OPTIONAL
 MASK AREA PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person at your installation that
installed VISION:Report to see which Windowing Technique parameters, if any,
were chosen.

Example
CALL QUIKDATE C'02' C'010194' C'MMDDYY ' PRT1 C'19'

You can only omit the optional parameter; all others are required. If you omit
the optional parameter, the Julian date created has the two-character year
format. Definitions of the valid values are:

Value Description

4 Four-character Julian year output format. If the input mask
indicates a four-digit year, that value is considered in formation of
the date. If a two-digit year format is used, control information
from the dates table determines the prefix.

Supply the following values only when the input mask is a two-character year:

19 the two-character year prefix to form a four-character date when
input year is two characters.

20 the two-character year prefix to form a four-character date when
input year is two characters.

The returned value is a character string of five or seven characters.

Note: If calling QUIKDATE from COBOL, this must be the first CALL to
QUIKDATE. This establishes where the return code is in your COBOL program,
and is the equivalent of VAL46-49 in a VISION:Report program.

6–22 VISION:Report Reference Guide

QUIKDATE — Date Calculation

Function 03 — Compute number of days between two dates
CALL QUIKDATE FUNCTION FIRST FIRST SECOND SECOND RETURN OPTIONAL

 DATE MASK DATE MASK AREA PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'03' '01134' C'YYDDD ' '021331' C'YYMMDD ' WST15 C'20'

You can only omit the optional parameter; all others are required. If both input
dates are four-character year formats, this parameter is not used and is ignored.
For two-character year format masks or fixed year sizes, the values represent:

Mixed year sizes

 4 prefix for the shorter date will be taken from the control
information of the dates table. This is the default if no
optional parameter is specified.

19 this prefix will be assigned to the shorter date.

20 this prefix will be assigned to the shorter date.

Two-character years

 4 default values are taken from the dates table control
information. This is the default if no optional
parameter is specified.

19 indicates the prefix for the first date and assigns 20 as
the prefix for the second date.

20 indicates the prefix for the first date and assigns 19 as
the prefix for the second date.

The returned value is three packed bytes.

Optional Material 6–23

QUIKDATE — Date Calculation

Function 04 — Convert a date to a day of the week
CALL QUIKDATE FUNCTION DATE MASK RETURN OPTIONAL
 AREA PARAMETER

Example
CALL QUIKDATE C'04' C'03/07/93' C'MM/DD/YY ' WST12-21

You can only omit the optional parameter; all others are required. If the input
date is in a four-character year format, this parameter is not used and is
ignored. For two-character year format masks:

Value Description

 4 default values are taken from the dates table control information. This
is the default if no optional parameter is specified.

19 this prefix will be assigned to the year.

20 this prefix will be assigned to the year.

The returned value is a maximum of ten characters. The first byte is the day
(such as, 1=MON, 2=TUES) followed by the day’s name spelled out (such as,
MONDAY, TUESDAY).

Function 05 — Compute month ending date for a given date
CALL QUIKDATE FUNCTION DATE MASK RETURN OUTPUT OPTIONAL
 AREA MASK PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'05' TRL-DATE C'YYMMDD ' PRT1 C'MM/DD/YYYY ' C'19'

You can only omit the optional parameter; all others are required. If the input
mask contains a four-character year, this parameter is not used and is ignored.
When input mask uses a two-digit year, the values are:

6–24 VISION:Report Reference Guide

QUIKDATE — Date Calculation

Value Description

4 Default values are taken from the control information of the dates
table. This is the default if no optional parameter is specified.

nn Any two digits to indicate the century.

The returned value is a maximum of ten characters in the format of the output
mask.

Function 06 — Compute number of days left in a calendar month
CALL QUIKDATE FUNCTION DATE MASK RETURN
 AREA

Example
CALL QUIKDATE C'06' INF7 C'DDMMYY ' WST15

You do not use the optional parameter for this function. All others are required.
The default century is taken from the date table.

The returned value is two packed bytes.

Function 07 — Compute week ending date for a given date
CALL QUIKDATE FUNCTION DATE INPUT RETURN OUTPUT OPTIONAL OPTIONAL
 MASK AREA MASK WEEKEND YEAR CODE
 CODE PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default with the optional Windowing Technique parameters in the
QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'07' INF1 C'YYDDD ' PRT6 C'YY/MM/DD ' C'5' C'20'

You can only omit the optional parameters; all others are required. There are
two optional parameters for this function.

■ The weekend code optional parameter allows you to override the dates
table definition of which day ends the work week (the weekend day). A
numeric value of 1 through 7, in character format, defines the last day of the
work week (such as, 1 = Monday, 7 = Sunday).

Optional Material 6–25

QUIKDATE — Date Calculation

■ If you use the year optional parameter, the weekend code parameter must
contain a value. If you do not want to override the weekend day defined on
the dates table, code a dummy value of zero, character format (C'0').

■ If you use the year end code optional parameter, you must use the weekend
code optional parameter (see example). When used, if both masks contain
the same number of year characters or the input mask is a four-character
year, the year code optional parameter is not used and is ignored. When the
output mask exceeds the input mask year characters, the values are:

Value Description

0 If weekend code is not used.

4 Default values are taken from the control information of the dates
table. This is the default if no optional parameter is specified.

nn Any two digits to indicate the century.

The returned value is a maximum of 10 bytes in the format of the output mask.

Function 08 — Adjust a date up or down
CALL QUIKDATE FUNCTION DATE INPUT ADJUST RETURN OUTPUT OPTIONAL
 MASK FACTOR AREA MASK PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'08' VAL71 C'YYDDD ' C'00031' PRT65 C'MM/DD/YY ’ C'19'

You can only omit the optional parameter; all others are required. The optional
parameter is ignored when the input mask is a four-character year. When it is a
two-character year, the valid values are:

Value Description

 4 Default values are taken from the control information of the dates
table. This is the default if no optional parameter is specified.

nn Any two digits to indicate the century.

6–26 VISION:Report Reference Guide

QUIKDATE — Date Calculation

The returned value is a maximum of ten characters in the format of the output
mask.

The adjust factor must be a five-character number if positive or six characters
with a leading minus sign. For example, C'00031' adds 31 days to the DATE; C'-
00031' subtracts 31 days from the date.

Function 09 — Compute a two-digit month code to alphabetic month
CALL QUIKDATE FUNCTION DATE MASK RETURN
 AREA

Example
CALL QUIKDATE C'09' C'0488' C'MMYY ' PRT1

You do not use the optional parameter for this function. All others are required.

The returned value is a character string of 9 bytes.

Function 10 — Compute number of work days between two dates
CALL QUIKDATE FUNCTION FIRST FIRST SECOND SECOND RETURN OPTIONAL
 DATE MASK DATE MASK AREA PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'10' C'01001' C'YYDDD ' C'001231' C'YYMMDD ' WST15 C'20'

You can only omit the optional parameter; all others are required. If both input
dates are four-character year formats, this parameter is not used and is ignored.
For two-character format masks or mixed year sizes, the values are discussed
separately:

Optional Material 6–27

QUIKDATE — Date Calculation

Mixed year sizes

 4 prefix for the shorter date will be taken from the control
information of the dates table. If you do not specify an
optional parameter, this is the default.

19 this prefix will be assigned to the year.

20 this prefix will be assigned to the year.

Two-character years

 4 default values are taken from the dates table control
information. If you do not specify an optional
parameter, this is the default.

19 indicates the prefix for the first date and assigns 20 as
the prefix for the second date.

20 indicates the prefix for the first date and assigns 19 as
the prefix for the second date.

The returned value is 6 bytes packed and the value should be treated as
containing one implied decimal digit.

If you assign a non-work day as a holiday, the results will be incorrect. For
example, if Fridays are normally a half-work day and New Year Day falls on a
Friday, indicate only a half-day off (work day values are 10=full day, 05=half
day, 00=off day).

Function 11 — Checks for holiday and time off
CALL QUIKDATE FUNCTION DATE MASK RETURN OPTIONAL
 AREA PARAMETER

For all functions that have the optional parameter (for the century), the default
value can be overridden by the optional Windowing Technique parameters in
the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Example
CALL QUIKDATE C'11' C'00140' C'YYDDD ' PRT80 C'20'

■ You can only omit the optional parameter; all others are required.

6–28 VISION:Report Reference Guide

QUIKDATE — Date Calculation

■ Dates of holidays in the user date table must be of the four-character year
format. The optional parameter is used to determine the prefix for two-
character input masks by the following values:

Value Description

 4 Default values are taken from the control information of the dates
table. This is the default if no optional parameter is specified.

nn Any two digits to indicate the century.

The returned value is two packed bytes indicating time off (00=no time off,
05=half day off, 10=full day off). The routine does not check to see if the date is
a non-work day (weekend).

Function 12 —Load another date table
CALL QUIKDATE FUNCTION DATETABLE

Example
CALL QUIKDATE C'12' C'MYTAB '

■ The date table must be the name of the user date table as identified in the
phase or load library. This must be an 8-byte character string, padded with
blanks if necessary.

■ The date table you specify is used until you specify another date table.

■ If you invoke this function, the default date table name of QUIKDATT is
used.

If the table name is invalid, you get a return code of 11 for any function that
tries to use the table (even if it is only to look up the default century).

Function 13 — Provide date of the first working date of the month
CALL QUIKDATE FUNCTION DATEIN INPUT RETURN OUTPUT OPTIONAL
 MASK AREA MASK PARAMETER

For all functions that have the optional parameter (for the century), you can
override the default value with the optional Windowing Technique parameters
in the QUIKDATT macro, as part of the QUIKDATE installation within
VISION:Report. You should check with the person who installed
VISION:Report at your site to see which Windowing Technique parameters, if
any, were chosen.

Optional Material 6–29

QUIKDATE — Date Calculation

Example
CALL QUIKDATE C'13' VAL71 C'YYDDD ' PRT65 C'MM/DD/YY ' C'19'

You can only omit the optional parameter; all others are required. The optional
parameter is ignored when the input mask is a four-character year. When it is a
two-character year, the valid values are:

Value Description

4 Default values are taken from the control information of the dates
table. If you do not specify an optional parameter, this is the default .

nn Any two digits to indicate the century.

The returned value is a maximum of ten characters in the format of the output
mask.

If there are no work dates in the month, a return code of 13 is set. The return
code could be correct, depending upon QUIKDATT or the user date table.

Error Codes

A return code is placed in the VISION:Report area VAL46-49 after each call to
QUIKDATE. If VAL46-49 is not 0000, an error occurred. The explanations for
the return codes are described below.

0001 Invalid function
0002 Invalid number of parameters
0003 Date code format invalid for function
0004 Address in parameter list not valid
0005 Invalid Julian date
0006 Invalid calendar date input
0007 Invalid year input
0008 Invalid day code
0009 Invalid date adjustment factor
0010 Invalid month abbreviation
0011 Invalid holiday table (user date table)
0012 Invalid optional parameter value
0013 No work days in the month.

You should check and then clear VAL 46-49 to avoid any possible conflicts in
return codes, such as during EOJ.

The HOLIDAY macro constructs the dates in the HOLIDAY table. Refer to the
VISION:Report Installation Guide.

6–30 VISION:Report Reference Guide

QUIKDATE — Date Calculation

Examples Using QUIKDATE

Example 1

Look through an Accounts Receivable file and print any invoices outstanding
over 30 days.

SORT AREA RL80 ON CUST-NR INV#
CALL QUIKDATE C'08' VAL71-75 C'YYDDD ' C'-00031' WST1-5 C'YYDDD '
 /* Subtract 31 days.
IF VAL46-49 IS NOT EQ TO ZERO /* Check for errors.
 PRINTHEX VAL46-49
 GOTO EOJ.
010 GET
 CALL QUIKDATE C'02' INF7-12 C'MMDDYY ' WST6-10 /* Convert invoice date
 /* MMDDYY to Julian date.
IF VAL46-49
 PRINTHEX VAL46-49
 MOVE ZEROS TO VAL46-49
 IF BILL-AMT IS ZERO
 GOTO 010.
 IF WST6-10 IS GT WST1-5 /* Compare date in invoice to date 31 days ago.
 GOTO 010. /* Invoice date is current.
 MOVE COMPANY TO PRT1 /* Invoice date outstanding, set up
print.
 MOVE BILL-AMT TO PRT40
 MOVE WST6-10 TO PRT60
 PRINT DOUBLE SPACED
 GOTO 010
999 END

Example 2

Compute how many days elapsed between the trial date and the date when the
company signed the contract.

EQU COMPANY-NAME INF1-36
EQU CONTRACT-DATE INF222-227 D
EQU TRIAL-DATE INF246-251 D
EQU NUMBER-DAYS WST1-3-P
TITLE ' DAYS BETWEEN TRIAL DATE AND CONTRACT DATE'
REPORT COMPANY-NAME CONTRACT-DATE TRIAL-DATE NUMBER-DAYS
MOVE ZERO TO NUMBER-DAYS
010 GET
CALL QUIKDATE C'03' TRIAL-DATE C'MMDDYY 'CONTRACT-DATE C'YYDDD'
 NUMBER-DAYS
 IF VAL46-49 IS NOT ZERO
 MOVE ZEROS TO VAL46-49
 PRINTHEX VAL46-49
 GOTO EOJ.
 PRINT REPORT
 GOTO 010
999 END

Optional Material 6–31

QUIKDPRT — Print User Date Table

QUIKDPRT — Print User Date Table
QUIKDPRT prints the contents of the user date table in a report format.

The user date table report is produced in two contiguous parts. The first part
prints the weekday and miscellaneous sections of the table. This details the
defined length of each day, the day designated as the end of the week, the
normal work week length, and default prefixes for two-character year format
date values.

The remainder of the report is a listing of the entries in the holiday dates portion
of the table (vertically, in a five column display). The first page of this listing can
contain up to 80 entries; subsequent pages can contain up to 125 entries. The
entries on the last page appear in balanced or even-column length.

This program is designed to execute alone, in batch mode. STEPLIB (MVS) or
LIBDEF (VSE) statements could be required to define the desired library if
multiple tables exist. The output is directed to the SYSPRINT file in MVS and to
the system logical unit SYSLST in VSE. The MVS SYSPRINT DD statement DCB
parameter must include RECFM=M, as printer control characters are machine
format. It must also define the record length as 133 characters, including control
character. To route the output to a tape or disk device, provide the JCL
statements to define the output data set. Execution is initiated by the statement:

// EXEC PGM=QUIKDPRT

or

// EXEC PGM=QUIKDPRT,PARM='MYDATT'

Do not call QJBDTPRL using VISION:Report statements.

6–32 VISION:Report Reference Guide

QUIKDPRT — Print User Date Table

 MYDATT H O L I D A Y A N D U S E R D A T E T A B L E D I S P L A Y DATE 10/25/95

 WEEKDAY AND MISCELLANEOUS ENTRIES PAGE 1

 CODE DAY LENGTH

 1 MONDAY 1.0 WEEK END DAY 7 (SUNDAY)

 2 TUESDAY 1.0 WEEK LENGTH 5.5

 3 WEDNESDAY 1.0 4 CHARACTER YEAR PREFIX DEFAULTS:

 4 THURSDAY 1.0 INPUT 19

 5 FRIDAY 1.0 OUTPUT 19

 6 SATURDAY .5

 7 SUNDAY .0

 HOLIDAY ENTRIES

 DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME

 JULIAN CALENDAR OFF JULIAN CALENDAR OFF JULIAN CALENDAR OFF JULIAN CALENDAR OFF JULIAN CALENDAR OFF

 1900001 01/01/1900 1.0 1993151 05/31/1993 1.0 1994315 11/11/1994 1.0 1995359 12/25/1995 1.0 1998365 12/31/1998 .5

 1900358 12/23/1900 .5 1993186 07/05/1993 1.0 1994328 11/24/1994 1.0 1995365 12/31/1995 .5 1999001 01/01/1999 1.0

 1900359 12/24/1900 1.0 1993249 09/06/1993 1.0 1994358 12/24/1994 .5 1996001 01/01/1996 1.0 1999358 12/24/1999 .5

 1992001 01/01/1992 1.0 1993284 10/11/1993 1.0 1994359 12/25/1994 1.0 1996359 12/24/1996 .5 1999359 12/25/1999 1.0

 1992146 05/25/1992 1.0 1993315 11/11/1993 1.0 1994365 12/31/1994 .5 1996360 12/25/1996 1.0 1999365 12/31/1999 .5

 1992185 07/03/1992 .5 1993329 11/25/1993 1.0 1995001 01/01/1995 1.0 1996366 12/31/1996 .5 2000001 01/01/2000 1.0

 1992251 09/07/1992 1.0 1993358 12/24/1993 .5 1995149 05/29/1995 1.0 1997001 01/01/1997 1.0 2000359 12/24/2000 .5

 1992286 10/12/1992 1.0 1993359 12/25/1993 1.0 1995185 07/04/1995 1.0 1997358 12/24/1997 .5 2000360 12/25/2000 1.0

 1992316 11/11/1992 1.0 1993365 12/31/1993 .5 1995247 09/04/1995 1.0 1997359 12/25/1997 1.0 2000366 12/31/2000 .5

 1992331 11/26/1992 1.0 1994001 01/01/1994 1.0 1995282 10/09/1995 1.0 1997365 12/31/1997 .5 2001001 01/01/2001 1.0

 1992359 12/24/1992 .5 1994150 05/30/1994 1.0 1995315 11/11/1995 1.0 1998001 01/01/1998 1.0 2001358 12/24/2001 .5

 1992360 12/25/1992 1.0 1994185 07/04/1994 1.0 1995327 11/23/1995 1.0 1998358 12/24/1998 .5 2001359 12/25/2001 1.0

 1992366 12/31/1992 .5 1994248 09/05/1994 1.0 1995358 12/24/1995 .5 1998359 12/25/1998 1.0 2001365 12/31/2001 .5

 1993001 01/01/1993 1.0 1994283 10/10/1994 1.0

Optional Material 6–33

QUIKFLOP — 3540 Floppy Disk Subroutine (VSE Only)

QUIKFLOP — 3540 Floppy Disk Subroutine (VSE Only)
QUIKFLOP supports the model 3540 floppy disk unit, allowing you to read an
input file, write an output file, and specify the logical record size. The 3540
floppy disk is not the same as a PC disk.

VERB PHASENAME OP1 OP2 OP3 OP4 OP5

CALL QUIKFLOP OPERATION REC-AREA FEEDBACK RECSIZE NO. DISKETTES
 INPUT

Operands

■ Operation specifies the I/O action to take, valid entries are:

■ C'READ' for floppy disk input on file QFLOPI.

■ C'WRITE' for floppy disk output on file QFLOPO.

■ C'CLOSE' for closing either one or both files (remaining operands not
needed with close).

■ The field definition of the starting position at which the data records are
read into with the READ operand, or written from with the WRITE
operand. The length of this REC-AREA is assumed to be equal to 80 or the
RECSIZE specified. This area is filled with high values (X'FF') when end of
file is reached on reading input records.

■ The field definition of a one-byte area at which status feedback information
is indicated. Possible values to expect are:

Blank No error occurred.

E EOF on input file.

1 Invalid recsize specified in Operand 4.

2 Invalid operand 1 specified.

3 Insufficient number of operands specified.

■ The logical record size to use for reading or writing floppy disk records. The
default of C'080' is used if not specified. When entered, it must be three
EBCDIC numeric digits in the range of 001 to 128 bytes. This operand is
optional.

■ This operand allows multiple disks on input operations. Must be 2 bytes
packed. OPER 4 (RECSIZE) must also be specified.

Call Examples
INPUT: CALL QUIKFLOP C'READ' WST1 WST201 C'100'

OUTPUT: CALL QUIKFLOP C'WRITE' INF1 WST1 C'128'

CLOSE: CALL QUIKFLOP C'CLOSE'

6–34 VISION:Report Reference Guide

QUIKFLOP — 3540 Floppy Disk Subroutine (VSE Only)

VISION:Report Example
// JOB FLOPPY
// ASSGN SYS004,X'CUU' Input-Assign Device
// DLBL QFLOPI,'INPUT',,DU -LABEL SET
// EXTENT SYS004
// ASSGN SYS005,CUU Output-Assign Device
// DLBL QFLOPO,'OUTPUT',,DU -LABEL SET
// EXTENT SYS005
// EXEC QUKBJOB
100 CALL QUIKFLOP C'READ' WST1 WST201
 IF WST1-5 IS HIVALUE /* Chk for EOF.
 GOTO 300. /* Do CLOSE at EOF.
 IF WST201 IS NOT BLANK /* Ck feedback.
 PRINTHEX WST1-201 /* Not blank, error.
 GOTO EOJ. /* Display area and stop run.
 * User
 * Processing
200 CALL QUIKFLOP C'WRITE' WST1 WST300 C'100'
 IF WST300 IS NOT BLANK /* Chk feedback.
 PRINTHEX WST1-300 /* Not blank, error.
 GOTO EOJ.
 GOTO 100 /* Display area and stop run.
300 CALL QUIKFLOP C'CLOSE' /* Close diskette files.
 GOTO EOJ
999 END
/*
/&

The VISION:Report program shown above is for illustrating the use of
QUIKFLOP in reading and writing disk files. Typically, most installations have
only one disk unit which can either read an input file or write an output file. In
this case, it would require two steps to copy disk to disk with an intermediate
storage of the file.

Optional Material 6–35

QUIKIDMS — CA-IDMS/DB Access Interface(Optional feature)

QUIKIDMS — CA-IDMS/DB Access Interface(Optional
feature)

QUIKIDMS is the VISION:Report interface to access all releases of CA-
IDMS/DB Database files, including release 12.0. Requests to CA-IDMS/DB with
VISION:Report are made by a CALL QJBIDMS. The integrated IDMS DML
statements are not supported since QUIKIDMS is a load and go processor,
eliminating the need for any preprocessing steps.

All CA-IDMS/DB functions are supported within the restrictions of the sub-
schema being used. A complete list of DML functions and CALL formats can be
found in the appropriate CA-IDMS/DB Guide.

QUIKIDMS provides you with access to the IDMS communications block in
which the database furnishes information concerning the outcome of the
requested service. You can reference this communications block in
VISION:Report by the data area name PCB. This area contains the suggested
initial values at the beginning of each execution of QUIKIDMS.

The communications block is 216 bytes long (PCB1-216). QUIKIDMS places the
job name in PCB1-8 and initializes the error-status indicator to C'1400' at PCB9-
12. The IDBMSCOM array located at PCB97-196 is used as a CALL argument,
indicating the DML function. A copybook of the communications block is in the
SAMPLIB, member name SSCTRL.

To use VISION:Report with CA-IDMS/DB, execute the program named
QUIKIDMS in conjunction with the necessary JCL, followed by the
VISION:Report statements. Make CA-IDMS/DB database requests with a CALL
QJBIDMS including one to four parameters depending upon the particular
request.

Example

A database service request in COBOL DML (that is, OBTAIN CALC record-
name) is coded in one of the following ways in VISION:Report using the EQU
and CALL verbs.

EQU OBTAIN-CALC PCB128 /* Same as IDBMSCOM(32).
EQU OBTAIN-SUF PCB139 /* Same as IDBMSCOM(43).
*
CALL QJBIDMS OBTAIN-CALC C'REC-NAME-LITERAL' OBTAIN-SUF

or

EQU COM-(32) PCB128 /* Same as IDBMSCOM(32).
EQU COM-(43) PCB139 /* Same as IDBMSCOM(43).
EQU RN WST301-316 /* Record name literal.
*
CALL QJBIDMS COM-(32) RN COM-(43)

6–36 VISION:Report Reference Guide

QUIKIDMS — CA-IDMS/DB Access Interface(Optional feature)

CA-IDMS/DB database protocol for initialization requires you to perform the
following DML functions:

■ The first IDMS call request must be BIND run-unit designating the
communications block area location (PCB1) and sub-schema name.

■ For each record type in the database that is referenced, you must code a
BIND record-name indicating the record-name literal and record location.

■ An OPEN function is performed by READY usage-mode including the type
of access to be made to the database.

Two examples of using VISION:Report with CA-IDMS/DB follow. They are
shown to illustrate the recommended EQU (equate) statements for coding calls
to CA-IDMS/DB. These examples are referencing the sample CA-IDMS/DB
database (refer to the VISION:Report Installation Guide).

Example 1 shows the use of EQU statements which are abbreviated IDMS DML
functions and calls to QJBIDMS to read the entire customer record base.

Example 2 shows the use of EQU statements which map to IDBMSCOM(nn)
shown in the IDMS call formats. The calls to QJBIDMS return ORDOR records
based upon the CALC key submitted in statements.

VSE JCL Example
// JOB QJIDMS1
// DLBL QJLIB,'your.VISION.lib' Phase Library
// EXTENT ,volser
// DLBL IDMS,’your.IDMS.lib’ Phase Library
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(QJLIB.sublib,IDMS.sublib)
// ASSGN SYS010,153
// DLBL SYS010,'IDMS.SAMPLE.CUSTOMER',,DA
// EXTENT SYS010,volser
// ASSGN SYS011,153
// DLBL SYS011,'IDMS.SAMPLE.PRODUCT',,DA
// EXTENT SYS011,volser
// EXEC QUIKIDMS,SIZE=512K
 ... VISION:Report statements as shown below
/*
/&

MVS JCL Example
//QJIDMS1 JOB (800-0000,0000),'IDMS EXAMPLE'
//STEP1 EXEC PGM=QUIKIDMS,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
// DD DISP=SHR,DSN=your.IDMS.loadlib
//SYSPRINT DD SYSOUT=*
//SYS010 DD DISP=SHR,DSN=IDMS.SAMPLE.CUSTOMER
//SYS011 DD DISP=SHR,DSN=IDMS.SAMPLE.PRODUCT
//SYSIN DD *
 ... VISION:Report statements as shown below
/*
//

Optional Material 6–37

QUIKIDMS — CA-IDMS/DB Access Interface(Optional feature)

Example 1
*
OPTION SEQCHK=NO
* 'DML' Function EQUates
EQU BIND-RUN-UNIT PCB155 /* BIND RUN-UNIT.
EQU BIND-RN PCB144 /* BIND 'rec-name'.
EQU READY-RETRIEVE PCB133 /* READY USAGE-MODE for retrieval.
EQU OBTN-1ST-RN-AN PCB115 /* Obtain first 'rec-name' within ‘area-name'
EQU OBTN-NXT-RN-AN PCB107 /* Obtain next 'rec-name' within 'area-name'.
EQU FINISH PCB98 /* Finish.
EQU OBTAIN-SUF PCB139 /* Obtain suffix arg. (i.e., IDBMSCOM(43)).
EQU COMM-BLOCK PCB1-216 /* IDMS communications block location.
EQU ERR-STAT PCB9-12 /* IDMS error-status location.
EQU CUST-RN SAV1-16 /* Customer rec-name literal.
EQU CUST-AN SAV17-32 /* Customer record location (area).
EQU CUSTOMER WST1-104 /* Customer record location.
 *
 HDR 1A 1 VISION:Report/ CA-IDMS/DB SAMPLE DATA BASE RETRIEVAL
 HDR 1B $IPLDAT$ PAGE PG
 *
10 MOVE SPACE TO SAV1-100 /* Blank SAV area for literal names.
 MOVE C'CUSTOMER' TO CUST-RN /* Set-up rec-name literal.
 MOVE C'CUSTOMER-REGION' TO CUST-AN /* Set-up area-name literal.
 *
20 CALL QJBIDMS BIND-RUN-UNIT COMM-BLOCK C'DEMOSSO3' /* Bind run-unit.
25 CALL QJBIDMS BIND-RN CUST-RN CUSTOMER /* Bind rec-name.
30 CALL QJBIDMS READY-RETRIEVE /* Ready usage-mode is retrieve.
35 PERFORM 900 THRU 990 /* Test error status.
 *
40 CALL QJBIDMS OBTN-1ST-RN-AN CUST-RN CUST-AN OBTAIN-SUF
 /* Obtn 1st rn-an.
 GOTO 60
 *
50 CALL QJBIDMS OBTN-NXT-RN-AN CUST-RN CUST-AN OBTAIN-SUF
 /* Obtn nxt rn-an.
60 IF ERR-STAT IS EQ TO C'0307' /* Test status for EOF condition.
 GOTO 200. /* Do close-up and EOJ.
 *
70 PERFORM 900 THRU 990 /* Test error status.
90 PRINTHEX CUSTOMER /* PRINT customer record in hex format.
100 GOTO 50
 *
200 CALL QJBIDMS FINISH /* Request finish.
 GOTO EOJ /* Go to End-Of-Job.
 *
900 IF ERR-STAT IS EQ TO C'0000' /* Test for zero IDMS return codes.
 GOTO 990. /* Equal, all is well.
 MOVE C'QUIKIDMS ABNORMAL STATUS' TO PRT1 /* Move err-msg to print.
 PRINT DOUBLESPACE /* PRINT.
 PRINTHEX COMM-BLOCK /* PRINT comm in hex.
 PRINTHEX CUSTOMER /* PRINT cust record area.
 GOTO EOJ /* Force End-Of-Job.
990 EXIT /* Exit PERFORMed routine.
 END

6–38 VISION:Report Reference Guide

QUIKIDMS — CA-IDMS/DB Access Interface(Optional feature)

Example 2
*
* 'DML' Function EQUates
EQU COM-(02) PCB98 /* Finish.
EQU COM-(32) PCB128 /* Find/obtain calc 'rec-name'.
EQU COM-(37) PCB133 /* Ready usage-mode for retrieval.
EQU COM-(43) PCB139 /* Obtain suffix arg. (i.e. IDBMSCOM(43)).
EQU COM-(48) PCB144 /* BIND 'rec-name'.
EQU COM-(59) PCB155 /* BIND run-unit.
EQU COMM-BLOCK PCB1-216 /* IDMS communications block location.
EQU ERR-STAT PCB9-12 /* IDMS error-status location.
EQU ORD-RN SAV1-16 /* Ordor rec-name literal.
EQU ORDOR WST1-40 /* Ordor record location.
EQU ORD-NUMBER WST1-7 /* Ordor record (key).
*
INFCARD /* VSE only.
 HDR 1A 1 VISION:Report/ I D M S SAMPLE DATA BASE RETRIEVAL
 HDR 1B $IPLDAT$ PAGE PG
 ATEND 200 /* At EOF, GOTO close routine.
 MOVE SPACES TO SAV1-100 /* Blank 'SAV' area for literal names.
 MOVE C'ORDOR' TO ORD-RN /* Set-up rec-name literal.
 CALL QJBIDMS COM-(59) COMM-BLOCK C'DEMOSSO3' /* BIND run-unit.
 CALL QJBIDMS COM-(48) ORD-RN ORDOR /* BIND rec-name.
 CALL QJBIDMS COM-(37) /* Ready usage-mode retrieve.
 PERFORM 900 THRU 990 /* Test error status.
 *
50 GET /* Read ordor trigger statements.
 MOVE INF1-7 TO ORD-NUMBER /* MOVE ord-key number to ord location.
 *
60 CALL QJBIDMS COM-(32) ORD-RN COM-(43) /* Obtain calc rec-name.
 *
 IF ERR-STAT IS EQ TO C'0326' /* Test status for no-record-found.
 MOVE INF1-2O TO PRT1 /* MOVE ordor-key number to ord location.
 MOVE C'ORDOR KEY NOT FOUND' TO PRT31
 PRINT DOUBLESPACE /* PRINT the line.
 GOTO 50. /* Go process next statement.
 PERFORM 900 THRU 990 /* Test error status.
 PRINTHEX ORDOR /* PRINT ordor record in hex format.
 GOTO 50 /* Go process next statement.
 *
200 CALL QJBIDMS COM-(02) /* Request finish.
 GOTO EOJ /* GOTO End-Of-Job.
 *
900 IF ERR-STAT IS EQ TO C'0000' /* Test for zero IDMS return codes.
 GOTO 990. /* Equal, all is well.
 MOVE C'QUIKIDMS ABNORMAL STATUS' TO PRT1 /* MOVE err-msg to print.
 PRINT DOUBLESPACE /* PRINT.
 PRINTHEX COMM-BLOCK /* PRINT comm area in hex.
 PRINTHEX ORDOR /* PRINT ordor record area.
 GOTO EOJ /* Force End-Of-Job.
990 EXIT /* EXIT PERFORMed routine.
 END

Optional Material 6–39

QUIKILIB — CA-Librarian Interface Assistance (MVS Only)

QUIKILIB — CA-Librarian Interface Assistance (MVS Only)
If the CA-Librarian Interface package is installed on your system, you can use
the CA-Librarian FAIR (File Access Interface Routines) routines. QUIKILIB is an
interface subroutine, which processes the CA-Librarian file (disk or tape) by
module name, returning to the user program one data unit at a time. QUIKILIB
retrieves a member using the -INC statement. Nesting of -INC statements is
supported.

QUIKILIB can be used by VISION:Report during the compile phase to retrieve
items such as a complete VISION:Report program, table statements, EQU
statements, or it can be used as a callable subroutine at execution time.

When QUIKILIB is used as a called routine, you must supply the called
program two parameters.

VERB MODULE OP1 OP2
CALL QUIKILIB AREA1 AREA2

Operands

■ An 80-byte area used as both a request and return area. Initiate a request
with a ’ -INC xxxxxxxx’ statement (xxxxxxxx is the name of the desired CA-
Librarian module) at this location. QUIKILIB returns the data to this area.
You cannot initiate another request until the end of the current module is
detected. When the last module you want is retrieved, terminate the CA-
Librarian interface by placing five bytes of high values (X'FF') in this area.

For a tape master, you can retrieve modules in any order, but excessive tape
positioning could result if you do not request the modules in ascending
sequence.

■ An area of 101 bytes where QUIKILIB returns messages that are associated
with return codes 8, 12, and 16.

A return code is placed in VAL46-49 following each call. These should be
checked to determine subsequent processing. Return codes are in character
form:

Code Description

0000 Data successfully returned from CA-Librarian—call again.

0004 An -INC statement has successfully identified a module (no data
returned)—call again.

0008 First parameter contains an error, second parameter contains a
message.

0012 End of module has been detected; first parameter contains end
message.

6–40 VISION:Report Reference Guide

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

Code Description

0016 Message from QUIKILIB - call again.

0020 CA-Librarian data set has been closed, do not call again.

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

The terms IMS and DL/I are used interchangeably, unless specifically noted
otherwise.

The program to execute or call is QUIKIMS for MVS and QUIKDLI for VSE.
QUIKIMS is 100 percent compatible with QUIKDLI, so if you switch from MVS
to VSE or vice-versa, your IMS/DL/I interface is the same. The QUIKIMS and
QUIKDLI interfaces are IMS and DL/I-release independent.

The interface is implemented by a CALL QJBTDLI. The CALL format is exactly
the same as you would code in COBOL or Assembler to communicate with IMS.
You do not need to be trained to use IMS with VISION:Report. Each and every
IMS rule and protocol is the same as in COBOL. All IMS functions are
supported. You can insert, delete, and replace, as well as execute read-only
calls.

Your current COBOL or Assembler-oriented PSB/PCBs are usable with no
modifications required. You can make calls against any of the PCB numbers
within a PSB. PL1 PSB/PCBs are not supported. You execute IMS or DL/I (as
you currently do) and specify QUIKIMS or QUIKDLI as the application
program to be executed.

VISION:Report allows 11 parameters in the QJ CALL, one of which states the
name of the interface. Since IMS calls require a function parameter, a PCB
parameter, and an I/O (work area) parameter at minimum, you have a
maximum of seven optional Segment Search Argument (SSA) parameters
available to you. This means qualified calls cannot exceed seven levels of IMS
database segment depth.

A data area is available to VISION:Report to aid in coding database
VISION:Report programs; this area is the PCB. PCB is a pointer only and not a
data area for storing data. On entry to VISION:Report and before the first
QJBTDLI call, PCB points to the first PCB in your PSB. Subsequent calls to IMS
cause the PCB pointer to be modified to point to the PCB used in the last
QJBTDLI call.

If you also have the VISION:Report Interface to DB2, be aware that it also uses
the PCB parameter, although its usage is slightly different.

Optional Material 6–41

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

QUIKIMS and QUIKDLI Syntax
 PARM1 PARM2 PARM3 PARM4 PARM5 PARM6 PARM11

CALL QJBTDLI C'FUNC' C'PCBnn' WORK/IO SSA1 SSA2SSA7

Note: The data pointed to by the QJ PCB is the actual PCB data within IMS.
Make references in a read-only mode to the PCB; otherwise, vital data can be
destroyed resulting in unpredictable results.

Parameters:

Parameters 1 through 4 are mandatory.

1. Name of interface. Must be QJBTDLI.

2. This is the function parameter. Must be a valid 4-digit IMS function code.
This parameter can be the character literal of the function such as C'GNbb'
or a VISION:Report area where the 4-digit function is found. See IMS or
DL/I reference material for valid function codes.

3. This is the PCB parameter and can be in the range of 01 to 255. You should
use a 2-digit numeric PSB number representing the PCB desired within your
PSB.

If the PSB has only one PCB and/or you want to use PCB number one, you
should use the C'01'.

This parameter can be the literal C'nn' of the appropriate PCB number or a
VISION:Report area where a two-digit EBCDIC numeric PCB number is
found.

4. This is the I/O work area into which segments are read or where you
place/build a segment for insertion.

This must be a VISION:Report area (such as, INF1, WST1, OFA1).

Note: If a common I/O area is used for all calls, it must be as long as the
longest segment.

5. through 11

The SSA parameters 5 through 11 are optional to VISION:Report. IMS/DLI
protocol must be observed as to whether SSAs are optional or required
depending upon the function you are attempting to execute.

This parameter can be in the form of a 9-byte character literal (of the
segment name) if unqualified SSAs are desired, or it can be a
VISION:Report area containing the formal SSA. If all 9-byte positions are
not used, there must be trailing spaces.

6–42 VISION:Report Reference Guide

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

Equates to Make QUIKIMS Coding Easier:

EQU PCB-DBNAME PCB1-8
EQU PCB-LEVEL PCB9-10
EQU PCB-STATUS PCB11-12
EQU PCB-PROCOP PCB13-16
EQU PCB-RESERVED PCB17-20
EQU PCB-SEGNAME PCB21-28
EQU PCB-KFBLEN PCB29-32
EQU PCB-SENSEG PCB33-36
EQU PCB-KFB PCB37

VSE QUIKDLI JCL Example
// JOB QJDLI
// DLBL QJPHASE,'your.VISION.lib' Phase Library
// EXTENT ,volser
// DLBL DLIPHSE,'your.DLI.lib' DLI Phase Library
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(QJPHASE.sublib,DLIPHSE.sublib)
 ...Data base assignment(s)
 ...DLBL/EXTENTs normal to your DL/I execution
 ...Any VISION:Report assignments, TLBL, DLBL/EXTENTs required
 ...
// EXEC DLZRRC00,SIZE=nnnK
 DLI,QUIKDLI,PSBName
 CALL QJBTDLI
 ... (VISION:Report statements and calls go here)
/*
 ... (Instream data to VISION:Report, if any, goes here)
/*
/&

MVS QUIKIMS JCL Example
//QJIMS JOB (800-0000,0000),'IMS JCL EXAMPLE'
//STEP1 EXEC PGM=DFSRRC00,PARM=,QUIKIMS,PSBName'
//STEPLIB DD DISP=SHR,DSN=your.VISION.loadlib
//IMS DD DISP=SHR...
//IEFRDER DD ...
//DFSRESLB DD ... IMS RESLIB
//DFSVSAMP DD ... Buffer Parameters
....
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD ...
//SYSIN DD *
 CALL QJBTDLI ...
 ... (VISION:Report statements and calls go here)
/*
//

Optional Material 6–43

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

CALL Examples

Retrieve all root segments. Write those having an on hand value greater than
$2,000.00 to an output file.

 EQU STATUS-CODE PCB11-12
 EQU IO-AREA OFA1
 EQU ON-HAND OFA56-59-P

100 CALL QJBTDLI C'GN ' C'01' IO-AREA C'ROOTSEGM '
 IF STATUS-CODE IS EQ C'GB' /* End of db?
 GO TO EOJ.
 IF STATUS-CODE IS EQ C' ' /* Ok call?
 IF ON-HAND IS GT P'200000' /* Gt 2k?
 WRITE OFA /* WRITE to file.
 GO TO 100. /* Go read next.
 PRINTHEX PCB1-50 /* Hexprint PCB.
 GO TO 100 /* Go read next.

Read the entire database. Accept all segments for inspection and possible use.

EQU STATUS-CODE PCB11-12
EQU IO-AREA WST1
100 CALL QJBTDLI C'Gn ' C'01' IO-AREA
 IF STATUS-CODE IS EQ C'GB' /* Test for end.
 GO TO EOJ.
 IF STATUS-CODE IS EQ C' ' OR /* Normal status?
 IF STATUS-CODE IS EQ C'GA' OR /* Cross a boundary?
 IF STATUS-CODE IS EQ C'GK' /* Diff seg type?
 GO TO 300.
* Error messages should be issued here
* PCB should be hex printed
* One might want to print I/O area and/or SSAs
 GO TO EOJ /* Terminate processing.
300 PROCESS SEGMENTS IN ANY MANNER DESIRED
 GO TO 100 /* Go read next segment.

6–44 VISION:Report Reference Guide

QUIKDLI — DL/I Interface (VSE Only) (Optional)
QUIKIMS — IMS Interface (MVS Only) (Optional)

Read the database and select only those segments where the field MF010010 is
equal to 90.

EQU PCB-NO WST30-31
EQU PCB-DBNAME PCB1-8
EQU PCB-LEVEL PCB9-10
EQU PCB-STATUS PCB11-12
EQU PCB-PROCOP PCB13-16
EQU PCB-RESERVED PCB17-20
EQU PCB-SEGNAME PCB21-28
EQU PCB-KFBLEN PCB29-32
EQU PCB-SENSEG PCB33-36
EQU PCB-KFB PCB37-137
000 MOVE C'01' TO PCB-NO
010 MOVE C'MF010000(MF010010 =90)' TO WST1-22
020 CALL QJBTDLI C'GN ' PCB-NO DET1 WST1
030 IF PCB-STATUS EQ C'GB'
040 GO TO EOJ.
050 IF PCB-STATUS EQ C' '
060 GO TO 110.
070 PRINTHEX PCB1-50
090 MOVE C'2048' TO VAL67-70
100 ABEND
110 MOVE DET1-10 TO PRT2
120 MOVE DET15-44 TO PRT20
130 PRINT
140 MOVE DET45-74 TO PRT20
150 PRINT
160 MOVE DET75-104 TO PRT20
170 PRINT
180 MOVE DET105-134 TO PRT20
190 PRINT
200 GO TO 020.
999 END

Optional Material 6–45

QUIKINCL — Source Statement Library Routine (VSE Only)

QUIKINCL — Source Statement Library Routine (VSE Only)
QUIKINCL retrieves a book from a VSE source statement library. It can be used
by VISION:Report during the compile phase to retrieve items such as a
complete VISION:Report program, table cards, EQU statements, from a source
statement library.

QUIKINCL will not run on releases prior to VSE.

To invoke QUIKINCL, you can use an OPTION statement at execution time or
permanently change the OPTION table for the installation to use the QUIKINCL
routine whenever VISION:Report is used.

The OPTION keyword is 'UEXIT1' (that is, OPTION UEXIT1=QUIKINCL).
Whenever QUIKINCL is used, a DLBL, EXTENT, and LIBDEF statement must
be included to point to the appropriate library containing the book (or books) to
be included. If the DLBL and EXTENT statements are in the standard label area,
they need not be coded.

QUIKINCL retrieves modules by the use of a ++INCLUDE statement. Up to six
levels of nesting of ++INCLUDE statements are supported.

++INCLUDE book-name

The syntax of the control statement defining the name of the book to QUIKINCL
is:

■ ++INCLUDE must start in column 1 of the statement.

■ Book-name is the name of the book to be included. The book name can be
from 3 to 10 characters long. There must be at least one space between the
++INCLUDE and the book name. The format of the book name is
X.YYYYYYYY, where X is sublib identifier and YYYYYYYY is the book
within that sublib. The period (.) is required.

If the book name cannot be found, an error code is passed back to
VISION:Report which causes a 3333 ABEND after all VISION:Report
statements have been analyzed. An error message is also printed on the
VISION:Report statement listing.

6–46 VISION:Report Reference Guide

QUIKINCL — Source Statement Library Routine (VSE Only)

Example

This is an example of how to add an include member to your QUIKJOB Library.

// DLBL FOR SOURCE
// EXTENT ,volser
// LIBDEF FOR SOURCE
// EXEC LIBR,SIZE=512K
 ACCESS S=QJSRC.QJ150
 CATALOG ARFILEI.Q REPLACE=YES

* *
********* ACCOUNTS RECEIVABLE FILE DESCRIPTION INPUT ***************
* *
* FOLLOWING IS THE FILE DESCRIPTION FOR A/R FILE, SEQ, VSAM: *
* *
* BLOCKSIZE=5280, LRECL=352, FIXED BLOCK (IF SEQUENTIAL) *
* *

EQU AR-RECORD INF1-352 /* Entire record
EQU AR-ACCOUNT INF4-10 /* Account number
EQU AR-TRANS-DATE INF38-43 D /* Transaction date
EQU AR-TRAN-MM INF38-39 /* MM
EQU AR-TRAN-DD INF40-41 /* DD
EQU AR-TRAN-YY INF42-43 /* YY
EQU AR-BILL-DATE INF44-49 D /* Billing date
EQU AR-BILL-MM INF44-45 /* MM
EQU AR-BILL-DD INF46-47 /* DD
EQU AR-BILL-YY INF48-49 /* YY
EQU AR-CUST-NAME INF85-109 /* Customer name
EQU AR-STREET INF110-134 /* Customer street addr
EQU AR-STATE-ZIP INF135-159 /* Customer city, state, Zip
EQU AR-CITY INF135-152 /* City
EQU AR-STATE INF153-154 /* State
EQU AR-ZIP INF155-159 /* Zip
EQU AR-BALANCE INF170-174-P 2C /*
EQU AR-ACCT-CODE INF182-183 /*
EQU AR-INSTL-BAL INF191-196-P 2C /* Amt left on installment
EQU AR-INSTL-PAY INF197-201-P 2C /* Planned installment paymt
EQU AR-BAL-PARTPAY INF202-205-P 2C /* Actual payment
EQU AR-INT-PARTPAY INF206-208-P 2C /* Interest, part payment
EQU AR-NR-PAY INF209-210-P 2C /*
EQU AR-KEY INF211-219 /* Key:
EQU AR-KEY-ACCT-CD INF211-212 /* Acct-code:
EQU AR-KEY-ACCOUNT INF213-219 /* Account

*
************ END OF ACCOUNTS RECEIVABLE FILE DESCRIPTION ***********
* *
**

The following VISION:Report program was written to create a report from the
AR file. The standard set of EQU statements for the AR file are to be used, plus
a standard I/O specifications for the AR file.

// DLBL FOR SOURCE
// EXTENT ,volser
// LIBDEF FOR SOURCE
// DLBL ARFILEI,'ARFILE.VSAM',,VSAM
// EXEC QUKBJOB,SIZE=512K
OPTION UEXIT1=QUIKINCL,SEQCHK=NO

Optional Material 6–47

QUIKINCL — Source Statement Library Routine (VSE Only)

The following statement causes the I/O specification statement for the AR file to
be included. This is an excellent way to make coding the VISION:Report easier;
plus, if the attributes of the file change, the VISION:Report programs using this
book will automatically use the current file attributes.

++INCLUDE Q.ARFILEI /* INF I/O spec card

The following statement causes a standard set of EQU statements to be included
for the AR file. This technique is another excellent way of reducing
programming changes whenever data is added, changed, or deleted from a
record description for a file.

++INCLUDE Q.ARFILEI /* AR file INF equates
REPORT AR-CUST-NAME
 AR-ACCT-CODE
 AR-ACCOUNT
010 GET
 PRINT REPORT
 GOTO 010
9999 END
/*

Nested INCLUDES

QUIKINCL supports up to 6 levels of nested ++INCLUDE statements. This
allows you to do such things as include an output AR file in addition to an input
AR file in one program. Assume the AR file for input has already been added as
shown in the previous example and you are adding the EQU statements and
I/O statement for an output AR file.

// DLBL FOR SOURCE
// EXTENT ,volser
// LIBDEF FOR SOURCE
// EXEC LIBR,SIZE=512K
 ACCESS S=QJSRC.QJ
 CATALOG ARFILEO.Q REPLACE=YES
EQU AR-RECORD-O OFA1-352 /* Entire record
EQU AR-ACCOUNT-O OFA4-10 /* Account number

EQU AR-KEY-O OFA211-219 /* Key:
EQU AR-KEY-ACCT-CD-O OFA211-212 /* Acct-code
EQU AR-KEY-ACCOUNT-O OFA213-219 /* Account
/+
 CATALOG ARFILEOO.Q REPLACE=YES
OFAKSDS 0352 LBL=ARFILEO
/+
 CATALOG ARFLALL.Q REPLACE=YES
++INCLUDE Q.ARFILEI
++INCLUDE Q.ARFILEO
++INCLUDE Q.ARFILEIE
++INCLUDE Q.ARFILEOE
/+
/*

6–48 VISION:Report Reference Guide

QUIKINCL — Source Statement Library Routine (VSE Only)

The following VISION:Report program was written to copy the AR file to
another VSAM file, dropping all records with a zip code of 91361. The standard
set of EQU statements for the input and output AR file are used, plus the
standard I/O specifications for both AR files.

// DLBL FOR SOURCE
// EXTENT ,volser
// LIBDEF FOR SOURCE
// DLBL ARFILEI,'ARFILE.VSAM',,VSAM
// DLBL ARFILEO,'ARFILE.VSAM.OUT',,VSAM
// EXEC QUKBJOB,SIZE=512K
OPTION UEXIT1=QUIKINCL,SEQCHK=NO
++INCLUDE Q.ARFLALL /* Bring in input & output files
010 GET
 IF AR-ZIP = C'91361'
 GOTO 010.
 MOVE AR-RECORD TO AR-RECORD-O
 WRITE OFA
 GOTO 010
9999 END
/*

Optional Material 6–49

QUIKIPAN — CA-Panvalet Subroutine (MVS Only)

QUIKIPAN — CA-Panvalet Subroutine (MVS Only)
QUIKIPAN retrieves a member from a CA-Panvalet library. QUIKIPAN is
distributed in source form. It retrieves a member by the use of a ++INCLUDE
statement. Up to 6 levels of nesting of ++INCLUDE statements are supported.

There are two methods for using this subroutine.

■ To include VISION:Report source code and/or table data from CA-
Panvalet at compile time, either temporarily or permanently change the
UEXIT1 option.

OPTION UEXIT1=QUIKIPAN

■ At the point where you want the source to appear in your
VISION:Report, code the following statement, starting in position 1:

++INCLUDE membername

■ To retrieve a module at execution time, make a standard call to
QUIKIPAN.

CALL QUIKIPAN WST1-80 PRT1-132

Because this subroutine is set up as a user exit module, there are some
restrictions for using it as a callable subroutine. These restrictions are:

There are two required parameters:

■ The first parameter passed must be an 80-byte area. This area serves as the
request and the return area. To request a member, initialize the area to
spaces, then move C'++INCLUDE ???????? ' to this area, where ???????? is
the member you are requesting. QUIKIPAN returns one record from the
member on each call; you cannot request another member until EOF has
been reached on the previously requested member.

■ The second parameter must be at least 101 bytes long. This area contains
messages returned from QUIKIPAN. These messages are not optional, so
you are required to supply this area. Messages are returned with the
following return codes: 0008, 0012, 0016.

After processing is complete, call QUIKIPAN with high values (X'FF') in the first
parameter. QUIKIPAN closes the CA-Panvalet data set. This is mandatory if
you want to process more than one member.

The syntax of the control statement defining the member name to QUIKIPAN is:

++INCLUDE must start in column 1 of the statement.

Member-name is the name of the member to include. The member name can be from 1
to 8 characters long. There must be at least one space between the ++INCLUDE
and the member name. A name less than 8 characters must be filled with blanks.

6–50 VISION:Report Reference Guide

QUIKIPAN — CA-Panvalet Subroutine (MVS Only)

If the member name cannot be found, an error code is passed back to
VISION:Report. This causes a 3333 ABEND after all VISION:Report statements
have been analyzed. An error message is also printed on the VISION:Report
statement listing.

The return code can be examined in VAL46-49. Possible codes returned are:

Code Description

0000 The first parameter did not contain ++INCLUDE in position 1.

0004 The first parameter contains a data record from the requested
member. Continue calling QUIKIPAN without altering the
request/return area in any way to receive more data records.

0008 The first parameter contains an error. The second parameter contains
the error message.

0012 EOF on the requested member. The first parameter contains the END
message.

0016 QUIKIPAN placed a message in the message area. Call QUIKIPAN
again without altering the request/return area in any way.

0020 The member is closed and acquired areas are free. Do not call
QUIKIPAN again.

A JCL statement defining the CA-Panvalet data set must have the ddname
PANVALET:

//PANVALET DD DSN= . . .

Optional Material 6–51

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)
The terms PDS and PDS/E are used interchangeably, unless otherwise noted.

QUIKIPDS retrieves a member from a partitioned data set (PDS). QUIKIPDS
retrieves members by the use of a ++INCLUDE statement. Up to 6 levels of
nesting of ++INCLUDE statements are supported.

There are two methods for using this subroutine.

■ To include VISION:Report source code and/or table data from a PDS at
compile time, either temporarily or permanently change the UEXIT1 option.

 OPTION UEXIT1=QUIKIPDS

■ At the point where you want the source to appear in your VISION:Report,
code the following statement, starting in position 1:

 ++INCLUDE membername

To retrieve a module at execution time, make a standard call to QUIKIPDS.

CALL QUIKIPDS WST1-80 PRT1-132

Input to QUIKIPDS is defined by a JCL statement with ddname QUIKIPDS. This
can be a single PDS or a list of concatenated partitioned data sets:

//QUIKIPDS DD DSN=FIRST.LIBRARY,DISP=SHR
(// DD DSN=NEXT.LIBRARY,DISP=SHR)
(.)
(.)
(.)
(// DD DSN=LAST.LIBRARY,DISP=SHR)

++INCLUDE member-name

The syntax of the control statement defining the member name to QUIKIPDS is:

++INCLUDE must start in column 1 of the statement.

Member-name is the name of the member to include. The member name can be from 1
to 8 characters long. There must be at least one space between the ++INCLUDE
and the member name. A name less than 8 characters must be filled with blanks.

If the member name cannot be found, an error code is passed back to
VISION:Report. This causes a 3333 ABEND after all VISION:Report statements
have been analyzed. An error message is also printed on the VISION:Report
statement listing.

6–52 VISION:Report Reference Guide

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)

QUIKIPDS Used as a User Exit At Compilation Time

The following INF file EQU statements are present in a PDS member called
PAYEQUS.

EQU DEPT INF1-4
EQU EMP# INF5-8
EQU YTD-GROSS INF9-18
EQU YTD-FICA INF19-28
EQU YTD-TAX INF29-38
EQU SEX INF50

The following VISION:Report program was written to create a report of all
employees in department 1020 making less than $29,000 per year. The standard
set of EQU statements for the PAYROLL file are to be used.

//LISTPAY JOB acct#,pgrname
//STEP0010 EXEC PGM=QUIKJOB
//STEPLIB DD DSN=your.vision.loadlib,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=... DD STATEMENT FOR PAYFILE
//QUIKIPDS DD DSN=MY.PDS,DISP=SHR (1)
//SYSIN DD *
OPTION UEXIT1=QUIKIPDS,SEQCHK=NO
++INCLUDE PAYEQUS (2)
TITLE 'PAYROLL ANALYSIS FOR DEPT 1020'
REPORT DEPT EMP# YTD-GROSS
010 GET
 IF YTD-GROSS LT C'0002900000'
 PRINT REPORT.
 GO TO 010
999 END

1 This statement is required. It points to the PDS library to include from.

2 This statement causes a standard set of EQU statements to be included for
the PAYROLL file. This technique is an excellent way of reducing
programming changes whenever data is added, changed, or deleted from a
record description for a file.

Nested INCLUDES

QUIKIPDS supports up to 6 levels of nested ++INCLUDE statements. For
example, you could include member TABLE3 whenever member TABLE1 or
TABLE2 was included.

Optional Material 6–53

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)

Examples

Assume the following VISION:Report table statements are present in a PDS
member called TABLE1.

010 DEPARTMENT 010
020 DEPARTMENT 020
++INCLUDE TABLE2
100 DEPARTMENT 100

Assume the following VISION:Report table statements are present in a PDS
member called TABLE2.

030 DEPARTMENT 030
040 DEPARTMENT 040
++INCLUDE TABLE3

Assume the following VISION:Report table statements are present in a PDS
member called TABLE3.

060 DEPARTMENT 060
070 DEPARTMENT 070
080 DEPARTMENT 080

If the following VISION:Report were written, TABLE2 and TABLE3 would be
included.

OPTION UEXIT1=QUIKIPDS,SEQCHK=NO
TABLSPEC 0100 01 03 04 20
010 GET
 IF INF1-3 IS ONTABLE
 MOVE INF1-3 TO PRT1 /* Dept code
 MOVE TBH4-23 TO PRT6 /* Dept name
 MOVE INF4-10 TO PRT40 2C /* YTD dept sales
 PRINT.
 GO TO 010
999 END
++INCLUDE TABLE1

In the previous example, if the ++INCLUDE TABLE1 was changed to
++INCLUDE TABLE2, TABLE3 would still be included. On the other hand,
++INCLUDE TABLE3 would not include TABLE1 and TABLE2.

6–54 VISION:Report Reference Guide

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)

QUIKIPDS Used as a Callable Subroutine At Execution Time

You can use QUIKIPDS as a callable subroutine at execution time but, because it
was designed as a user exit for VISION:Report, there are some restrictions.

There are two parameters; both are required.

■ The first parameter must be 80 bytes. This area serves as the request and
return area. To request a member, move ’++INCLUDE ????????’ to this area,
where ???????? is the member you are requesting. You cannot request
another member until the previously requested member has reached EOF,
with the exception that a ++INCLUDE in the requested member is
processed.

■ The second parameter must be at least 101 bytes. This area contains
messages from QUIKIPDS.

After processing is complete, call QUIKIPDS with high values (X'FF') in the first
parameter. QUIKIPDS closes the PDS and frees any acquired storage areas.

The return code can be examined in VAL46-49. The possible return codes are:

Code Description

0000 The first parameter did not contain ++INCLUDE in position 1.

0004 The first parameter contains a data record from the requested PDS
member. Continue calling QUIKIPDS without altering the
request/return area in any way to receive more data records.

0008 The first parameter contains an error. The second parameter
contains the error message.

0012 EOF on the requested member. The first parameter contains the
END message.

0016 QUIKIPDS has placed a message in the message area. You must
call QUIKIPDS again without altering the request/return area in
any way.

0020 The PDS has been closed and acquired areas have been freed. Do
not call QUIKIPDS again.

Note:

■ You should clear the message area any time the return code indicates that a
message was placed there, as QUIKIPDS does not do any clearing.

■ The message area is formatted for VISION:Report use. Some messages will
be indented and some will not. Carriage control characters will appear with
some of the messages.

Optional Material 6–55

QUIKIPDS —PDS and PDS/E Include Subroutine (MVS Only)

Example

Following is an example of how to use QUIKIPDS at execution time to retrieve
the records from a member in a PDS.

//QUIKIPDS JOB acct#,pgrname
//STEP0010 EXEC PGM=QUIKJOB
//STEPLIB DD DSN=your.vision.loadlib,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//QUIKIPDS DD DSNAME=....
//SYSIN DD *
OPTION SEQCHK=NO,LIST=YES
EQU WORKINGSTORAGE WST
EQU REQUEST-RETURN (80) BLANKS
EQU MESSAGE-AREA (101) BLANKS

001 TITLE 'P D S LISTING FOR MEMBER INFTAB1'
002 REPORT REQUEST-RETURN (RECORD..IMAGE)

010 MOVE C'++INCLUDE TAB1 ' TO REQUEST-RETURN /* Set up request.
020 CALL QUIKIPDS REQUEST-RETURN MESSAGE-AREA /* Call PDS module.

030 IF VAL46-49 EQ C'0004' /* Request-return contains data.
040 PRINT REPORT /* From the member, PRINT report
050 GO TO 020. /* and keep calling for more data.

060 IF VAL46-49 EQ C'0012' /* End of member - end message is
070 PRINT REPORT /* In request-return, PRINT it and
080 GO TO 900. /* Then tell QUIKIPDS to close PDS.

090 IF VAL46-49 EQ C'0008' /* Request is in error -the reason
100 PRINT REPORT /* Is in the message area, PRINT it
110 MOVE MESSAGE-AREA TO PRT1 /* And the message and then tell
120 PRINT /* QUIKIPDS to close the PDS.
130 GO TO 900.

140 IF VAL46-49 EQ C'0016' /* Message from QUIKIPDS, possibly
150 MOVE MESSAGE-AREA TO PRT1 /* A nested include, print the msg,
160 PRINT /* Clear the area, and keep calling
170 MOVE SPACES TO MESSAGE-AREA /* For more data,
180 GO TO 020.
190 ABEND /* Something must be wrong - ABEND.

900 MOVE HIVALUES TO REQUEST-RETURN /* Indicate processing completed.
910 CALL QUIKIPDS REQUEST-RETURN MESSAGE-AREA /* CALL PDS module.
920 IF VAL46-49 EQ C'0020' /* PDS has been CLOSEd – terminate
930 GO TO EOJ. /* Processing.

940 ABEND /* Something must be wrong - ABEND.
999 END
/*

6–56 VISION:Report Reference Guide

QUIKISAM —MVS ISAM Subroutine

QUIKISAM —MVS ISAM Subroutine
MVS QUIKISAM allows you to randomly retrieve, update, and/or add new
records to an ISAM data set. QUIKISAM can handle up to 9 different ISAM data
sets during one given execution of VISION:Report. QUIKISAM can be called
from Assembler or COBOL programs.

Random Retrieval

You must specify an area for the retrieved records and a key (same length as
key on the file) of the retrieved record. If the record is not found, the subroutine
passes high values back into this area. A return code of 12 is also placed in the
VISION:Report return code in the values area (VAL46-49).

If the ISAM data set contains variable length records, the record returned is in
the form of RL00DDDDDDDDDD.........DDDD where RL equals the record
length in binary, 00 equals binary zero, and DDDD equals the record data.

Update

To update a record, read the record without changing the key. Then, specify the
beginning location of the record to be updated and a parameter specifying
C'UPDATE'.

You can change the RL portion of the variable length records to either shorten
or lengthen records which are to be updated.

The subroutine does not allow records with a record length greater than LRECL
of the data set to be rewritten. A return code of 8 is placed in the VAL return
area (VAL46-49) and the record is not written if this condition is requested.

Add a Record

 To add a record, specify its location as one parameter and C'ADD' as another.

Duplicate records (records with duplicate keys) are not added to the data set. A
return code of 12 is placed in the VAL return code (VAL46-49) if a duplicate add
is attempted.

Addition of variable length records should be in the format of
RL00DDDDDDDD as explained above.

A return code of 8 is placed in the return code (VAL 46-49) if an attempt to add
a variable record is made with the record length greater than the LRECL of the
data set.

Optional Material 6–57

QUIKISAM —MVS ISAM Subroutine

QUIKISAM CALL Formats
CALL QUIKISAM OPERAND2 OPERAND3 OPERAND4 [OPERAND5]

Random Retrieval
CALL QUIKISAM OPERAND2 OPERAND3 OPERAND4 OPERAND5

Operands

■ QUIKISAM is the name of the subroutine in the library.

■ C'READ'. This is the function operand. This requests a random read.

■ VISION:Report area to return or place the ISAM record into.

■ VISION:Report area containing the key of the record to be retrieved.

■ C'ISAM1', C'ISAM2',.....C'ISAM9’. This is the ddname of the data set from
which you want the retrieval to be made. If a ddname is not specified the
default is ISAM1.

A DD statement is required for each data set to be referenced by the subroutine.

Example
CALL QUIKISAM C'READ' WST101 INF1-5 C'ISAM1'

The previous statement attempts to read a record from the ISAM1 data set into
working storage beginning at WST101. The key of the record to be retrieved is
found at INF1.

The fact that INF1-5 is specified does not specify a 5-byte key. The key length is
taken from the information in the DD statement and/or data set. INF1 specifies
where position one of the key begins.

CALL QUIKISAM C'READ' WST101 INF1

The previous call yields the same results as the prior one. ISAM1 data set is
used by default.

Update
CALL QUIKISAM OPERAND2 OPERAND3 OPERAND4

Operands

■ QUIKISAM is the name of the subroutine in the library.

■ C'UPDATE'. This is the function operand. This requests an update.

6–58 VISION:Report Reference Guide

QUIKISAM —MVS ISAM Subroutine

■ Symbolic address of the record to be rewritten (updated).

■ C'ISAM1', C'ISAM2'....C'ISAM9'. This is the ddname of the data set you
want updated. Default is C'ISAM1'

Example
CALL QUIKISAM C'UPDATE' WST101 C'ISAM1'

This statement attempts to update a record in the ISAM1 data set. The record
begins at WST101.

The record to be rewritten must be the most recent read from the subject data
set.

Add or Insert
CALL QUIKISAM OPERAND2 OPERAND3 OPERAND4

Operands

■ QUIKISAM is the name of the subroutine in the library.

■ C'ADD'. This is the function operand. This specifies an add or insert
function.

■ A VISION:Report area and starting position where the record to be added
or inserted. The key should not already exist in the file.

If the RKP is zero and the file is unblocked, the area should be the length of
one record in the file plus the length of the key. The area should be built in
KKKKDDDDDDDDDD..... where K represents the key and D represents the
data.

■ C'ISAM1', C'ISAM2'....C'ISAM9'. This is the ddname where the record is
added or inserted. If you do not specify a ddname, the default is C'ISAM1'.

Example
CALL QUIKISAM C'ADD' WST201 C'ISAM1'

This statement attempts to insert or add a record which begins at WST201. The
data set to be inserted into is ISAM1.

A return code of 12 is placed in the VAL return code area (VAL 46-49) if you
attempt to add a record that already exists in the file. The action is not
performed.

Optional Material 6–59

QUIKISAM —MVS ISAM Subroutine

Call to Close Files

You should always close the files at the conclusion of your processing and prior
to transferring to EOJ.

CALL QUIKISAM C'CLOSE'

This form of the call informs QUIKISAM to close all of the files.

Special Options

The QUIKISAM routine has three modes of operation:

■ Random retrieval only. This mode (RANDOM) is the least expensive mode
in terms of memory used.

■ Random retrieval plus update. This mode (UPDATE) is the next most
expensive in terms of memory used.

■ Random retrieval plus update plus ability to add or insert records into the
data set(s). This mode (ALL) is the most expensive in terms of memory used
and is the default mode.

One call must be made for each file to be customized. If you want to customize a
data set, you must make an option call before any other call which references
the data set.

CALL QUIKISAM C'OPTION' C'ALL' C'filename'
CALL QUIKISAM C'OPTION' C'UPDATE' C'filename'
CALL QUIKISAM C'OPTION' C'RANDOM' C'filename'

Filename could be ISAM1,ISAM2......ISAM9, and is not an optional parameter.

Size of Routine

The basic QUIKISAM routine is approximately 4K. Areas such as I/O areas and
work areas are dynamic and add to the 4K basic requirement.

BISAM is used as an I/O management method. The ultimate amount of
memory needed to support QUIKISAM varies. Storage requirements depend
upon the requested options (or defaults) and whether or not BISAM is resident.

Return Codes

When using this routine with COBOL, the return codes are available in
COBOL’s special return code register. When using this routine with Assembler,
the return code is available in Register 15.

6–60 VISION:Report Reference Guide

QUIKISAM —MVS ISAM Subroutine

Record Formats and Space Requirements

Variable length records are retrieved in the following format. You should also
use this as a guide to insert new records.

RL00DRDRDRDR............DR

Where RL equals binary record length

Where 00 equals binary zero

Where DR equals the data record.

The key is found embedded within the record at the appropriate position. If
RKP is 12, LRECL is 76, and KL is 4, the record returned is 76 maximum long;
RL is in position 1 and 2; the key is in position 13-16.

RL00DDDDDDDDKKKKDDDDD...........D

1-4 5-12 13-16 17-76

Variable Length
1 LRECL 75
 Unblocked Data area required to retrieve record
 KL 5 into or build record for add=75
 RKP 4

 RL00 KEY DATA

 1-4 5-9 10-75
2 LRECL 75
 Blocked Same as format above
 KL 5
 RKP 4

Optional Material 6–61

QUIKISAM —MVS ISAM Subroutine

Fixed Length

Fixed length records with RKP other than 0 are returned in the following
format. You should also use this as a guide to insert new records.

3 LRECL 75
 Unblocked Data area length required to retrieve
 KL 5 record into or build record for add=80
 RKP 0

 KEY DATA

 1-5 6—80
4 LRECL 80
 Blocked Data area required to retrieve record
 KL 5 into or build record for add=80
 RKP 0
 KEY DATA
 1-5 6—80
5 LRECL 80
 Unblocked Data area required to retrieve record
 KL 4 into or build record for add=80
 RKP 76

 DATA KEY

 1-76 77-80
6 LRECL 80
 Unblocked Data area required to retrieve record
 KL 5 into or build record for add=80
 RKP 4
 DATA KEY DATA
 1-4 5-9 10-80

6–62 VISION:Report Reference Guide

QUIKISAM —MVS ISAM Subroutine

Exceptions and Exceptional Conditions

QUIKISAM aborts with an ABEND code U3999 on the console and with an
explanatory message on the printer under the following conditions:

■ Missing DD statement.

■ Invalid function for the file.

■ Invalid file name (not ISAM1 through ISAM9).

■ Too many or too few operands on a CALL request.

■ Attempt to rewrite a record with a key other than that of the record read.

■ Close has been issued. No subsequent attempts at I/O are allowed.

■ A second or subsequent option type call is being requested, a previous
option has been issued or defaulted to, and I/O has been performed. You
can make one option type request prior to any I/O; no subsequent ones are
allowed.

■ Option issued for open file.

■ Option invalid second operand.

■ Program (QUIKISAM) logic error—should not occur.

■ Invalid update attempt.

■ Invalid add attempt.

■ Attempt to update record not read.

Optional Material 6–63

QUIKISAM — VSE ISAM Macro

QUIKISAM — VSE ISAM Macro
Any subroutine generated by the QUIKISAM macro has the necessary code to
support random retrieval, updating a retrieved record, and adding a new
record.

Random Retrieval
CALL PHASENAME OPERAND2 OPERAND3

Operands

■ PHASENAME is the name of the subroutine as link-edited in the Phase
library.

■ The location of the starting position for the retrieved record. WST1 as an
operand causes a retrieved record to be placed into WST1-xxxx. You must
allow sufficient room for the record.

You might want to use a file name not in use by the program to gain space
for these purposes. Specify an input/output parameter for a file such as
OFC, set the block length and record length the same, and assign the file
IGN with an ASSGN statement in VSE. The SAV area can also be used.

■ The location of the starting position for the key of the desired record. The
key must be of the proper length as described to the QUIKISAM macro and
consistent with the key of the file in question.

Example
CALL QUIKRAN WST201 INF1-xxx

This example calls a QUIKISAM generated routine named QUIKRAN. The
retrieved record is returned into WST201-xxx. The key to retrieve the record is
located at INF1-xxx. If the record cannot be found, WST201-xxx is filled with
high values (X'FF').

Update
CALL PHASENAME OP2 OP3

Operands

■ PHASENAME is the name of the subroutine as link-edited in the Phase
library.

■ The location of the starting position for the updated record.

6–64 VISION:Report Reference Guide

QUIKISAM — VSE ISAM Macro

The record must have been randomly read by the QUIKISAM routine as the
last or immediately previous action performed by the QUIKISAM routine;
reads for other records from the ISAM file or additions to the ISAM file
must not have been performed since the read for this record was performed.

The QUIKISAM routine checks the key of the record you want to update
against the key of the record read previously by the QUIKISAM routine; if
they do not agree, the program aborts with a console message and/or abend
code. This action guarantees the integrity of your files and protects you
from error.

■ C'UPDATE'. This is the function operand. This requests an update action
against a previously read record.

Example
CALL QUIKRAN WST201 C'UPDATE'

This CALL example informs the routine QUIKRAN that the record to be
updated against the previously read record’s key is for blocked records only.
This keeps you from committing logical errors such as trying to update a record
that has not been read for update. It also keeps you from changing the contents
of the key in the record.

No such check can be made for unblocked records.

Addition or Insertion of a Record
CALL PHASENAME OP2 OP3 OP4

Operands

■ PHASENAME is the name of the subroutine as link-edited in the Phase
library.

■ The location of the starting position of the added or inserted record. The key
should not already exist in the file.

If the file is blocked, this area should be the length of one record in the file
and the key should be embedded within the record at the same relative
position as that of the ISAM file in question.

If the file is unblocked, this area should be the length of one record in the
file plus the length of the key. The area should be built in
KKKKDDDDDDDDDDDDD... fashion; where K represents a key and D
represents the data.

■ C'ADD'. This is the function operand. This requests an add or insert to the
file.

Optional Material 6–65

QUIKISAM — VSE ISAM Macro

■ (Optional.) A VISION:Report area one-byte long where a warning code is
returned if the record to be added is a duplicate. If this is omitted,
duplicates are not added to the file and processing continues on a normal
basis. An EBCDIC 'D' (or hex X'C4') is placed at this location if a duplicate
add is attempted. Duplicates are not added whether this operand is used or
omitted.

Example
CALL QUIKRAN WST201 C'ADD' WST500

This example calls a routine called QUIKRAN. The action requested is an ADD
to the file. If the record in question is a duplicate, QUIKRAN places a D at
WST500. The record is found at WST201-xxx.

Close the File When Adding Records
CALL PHASENAME OP2

Operands

■ PHASENAME is the name of the subroutine as link edited in the Phase
library.

■ C'CLOSE' This is the function operand and it requests the ISAM file to be
closed.

Your end of job routine should always include a CALL phasename C'CLOSE'
regardless of the functions that have been performed on the file.

6–66 VISION:Report Reference Guide

QUIKMOVE — Variable/Undefined Move Routine

QUIKMOVE — Variable/Undefined Move Routine
 OP1 OP2 OP3
CALL QUIKMOVE FROM-AREA TO-AREA LENGTH
 (2 BYTE BINARY)

QUIKMOVE moves data from one location to another, for the length of a value
specified by you.

QUIKMOVE provides you with a convenient method of moving data with
variable or undefined lengths, based upon a supplied value.

Note: To accomplish the same results in a more straightforward manner, you
can also use the MOVE variable length verb instead of QUIKMOVE.

Operands

■ The location of the first byte of the sending data area.

■ The location of the first byte of the receiving area.

■ The location of the value, which is used to indicate the length of the data
movement, in sending and receiving locations.

The length specified must be in a 2-byte binary format. The maximum value
allowed for the length operand is 32,767.

Examples
CALL QUIKMOVE INF1 OFA1 WST1

Variable-length record move:

CALL QUIKMOVE INF1 OFA1 INF1 /* RL in INF1-2-B

Undefined-length record move:

MOVE VAL1-4-P TO WST1-2-B /* RL in VAL1-4-P
CALL QUIKMOVE INF1 OFA1 WST1

Data perpetuation move:

MOVE C'*' TO CTA1 /* Fill CTA1-1501 with '*'
MOVE C'1500' TO WST1-2-B
CALL QUIKMOVE CTA1 CTA2 WST1

Instead of using a CALL to QUICKMOVE, you can also code the following
natively:

EQU MY-CON WST1 C'*'
EQU MY-WST (100)
EQU MY-LEN (2)-B X'0064'
 MOVE MY-CON TO MY-WST MY-LEN /* FILL MY-WST WITH '*'

Optional Material 6–67

QUIKPDS — PDS and PDS/E Routine (MVS Only)

QUIKPDS — PDS and PDS/E Routine (MVS Only)
CALL QUIKPDS FUNCTION OP1 OP2

The terms PDS and PDS/E are used interchangeably, unless specifically noted
otherwise.

QUIKPDS allows updating and sequential and random retrieval of a PDS.
QUIKPDS provides a convenient method of reading a PDS directory and
optionally retrieving one or more members from the PDS. Sequential and
random retrieval of PDS members are supported. Updating of records is
supported by the OPEN-UPD and PUT functions.

Opening a PDS
CALL QUIKPDS C'OPEN' C'ddname '

This CALL is only required if the ddname is different than the default ddname,
which is QUIKPDS.

The ddname parameter is optional and, if used, must be 8 bytes — padded with
spaces if necessary. If the ddname parameter is omitted, the default ddname of
QUIKPDS is used. If QUIKPDS is already opened, the OPEN call will be
ignored. Be sure to close the data set if you want to change the ddname.

CALL QUIKPDS C'OPEN-UPD' C'ddname '

This call is required if you want to retrieve records for updating, by PUT
function.

Closing a PDS
CALL QUIKPDS C'CLOSE'

Along with closing the PDS, this call also frees the buffer areas. You should
always code this call before going to EOJ. If QUIKPDS is not opened, the CLOSE
call is ignored. If you use the DELUPGM=YES OPTION without the CLOSE
call, the VISION:Report program abends.

Reading a Directory Entry
CALL QUIKPDS C'READ-DIR' member-name generic-lth

The member-name parameter is required and must be 8-bytes long, padded
with spaces if necessary. This call establishes the area within VISION:Report
which contains the directory entry, and is required before any member
processing is allowed.

6–68 VISION:Report Reference Guide

QUIKPDS — PDS and PDS/E Routine (MVS Only)

The generic-lth parameter is optional and, if used, must be a one-byte EBCDIC
area containing a numeric digit of 1 through 8. This parameter implies
sequential retrieval and retrieves only directory entries whose positions 1
through n match positions 1 through n of the member-area (where n is the
contents of the generic-lth parameter). Do not use this parameter if you are
doing random retrieval.

QUIKPDS can be patched to return the entire directory entry (not just the name)
and reposition (point) to a member that has just been read. The member-name
parameter must be expanded to include the entire directory entry. See the
person who installed QUIKPDS for more information.

Reading a Member
CALL QUIKPDS C'GET' record-area

The record-area parameter is required and must be the same length as the
record length of the PDS. If the PDS has undefined record formats (RECFM=U),
the record-area must be the same length as the block size. For variable length
records (RECFM=V), the area must be the same length as the maximum record
length, including the 4-byte RDW.

If you opened the PDS using the OPEN-UPD function, the GET function
retrieves each record in update mode by the PUT function. However, it is not
necessary to issue a PUT function on a record that has been read in update
mode. QUIKPDS automatically detects if any records in a block have been
updated, rewriting the block only if updates have occurred.

Updating a Member
CALL QUIKPDS C'PUT' record-area

This function updates the current record in the directory block that was
previously selected by the GET function. The functions OPEN-UPD and GET
must have been previously selected.

Optional Material 6–69

QUIKPDS — PDS and PDS/E Routine (MVS Only)

Checking the Return Code

QUIKPDS communicates the outcome of the call through the return code area
(VAL46-49). Return codes are as follows:

Code Description

0000 Call completed successfully.

0004 Member requested was not found.

0008 End of directory.

0012 End of member.

Sequential Retrieval of Directory Entries

To sequentially retrieve directory entries from a PDS, initialize the member-area
with spaces and issue a READ-DIR call. Each call returns the next entry until the
end of the directory is indicated by a return code 8 in VAL46-49.

EQU MEMBER-AREA WST1-8 SPACES
010 CALL QUIKPDS C'READ-DIR' MEMBER-AREA
 IF VAL46-49 EQ C'0008' /* End of directory?
 GO TO 900. /* Yes, go to CLOSE the PDS.
 MOVE MEMBER-AREA TO PRT1
 PRINT
 GO TO 010.

Random Retrieval of Directory Entries

To retrieve a specific directory entry randomly, move the 8-byte name of the
member to the member-area and issue a READ-DIR call. Upon return, check the
return code in VAL46-49 to determine if the member exists.

EQU MEMBER-AREA WST1-8
 MOVE C'ASMFCL ' TO MEMBER-AREA
 CALL QUIKPDS C'READ-DIR' MEMBER-AREA
 IF VAL46-49 EQ C'0004' /* Member not found?
 ABEND.

Sequential Retrieval of All Members

To retrieve the actual members in a PDS sequentially, initialize the member-area
with spaces and issue a READ-DIR call. Then issue GET calls until either the
end of the member is indicated by a return code of 12 in VAL46-49, or you no
longer want to retrieve any more records from that member.

6–70 VISION:Report Reference Guide

QUIKPDS — PDS and PDS/E Routine (MVS Only)

In either case, when you want to start retrieval from the next member, simply
reissue the READ-DIR call. You must also check for the end of the directory,
which is indicated by a return code of 8 in VAL46-49.

Note: Do not alter the contents of the member area as this indicates that
random retrieval is desired.

The name of the member currently being processed is available in the member-
area.

EQU MEMBER-AREA WST1-8 SPACES
EQU RECORD-AREA WST9-88
010 CALL QUIKPDS C'READ-DIR' MEMBER-AREA
 IF VAL46-49 EQ C'0008' /* End of directory?
 GO TO 900. /* Yes, go to CLOSE the PDS.
040 CALL QUIKPDS C'GET' RECORD-AREA
 IF VAL46-49 EQ C'0012' /* End of member?
 GO TO 010. /* Yes, go get next dir.
 MOVE RECORD-AREA TO PRT1
 MOVE MEMBER-AREA TO PRT81 /* Move member name
 PRINT
 GO TO 040 * Go get another record.
900 CALL QUIKPDS C'CLOSE'
 GO TO EOJ
999 END

Generic Retrieval of Directory Entries

To retrieve directory entries generically, initialize the member-area with the
data on which you want the generic match. Then issue READ-DIR calls with the
generic-lth parameter containing the length of the data to use in the match.

In the following example, all the entries prefixed with the characters MKT are
returned until the end of the directory is indicated by return code 8 in VAL46-
49.

MEMBER-AREA WST1-8 C'MKT '
EQU RECORD-AREA WST9-88
020 CALL QUIKPDS C'READ-DIR' MEMBER-AREA C'3' /* Length of 3 in member name
 IF VAL46-49 EQ C'0008' /* End of directory?
 GO TO 900. /* Yes, go close the PDS.
040 CALL QUIKPDS C'GET' RECORD-AREA
 IF VAL46-49 EQ C'0012' /* End of the member?
 GO TO 020. /* Yes, get next mkt dir.
 MOVE RECORD-AREA TO PRT1
 PRINT
 GO TO 040

In the above example, after each successful call for READ-DIR, the member-area
contains the name of the next member found.

Optional Material 6–71

QUIKPDS — PDS and PDS/E Routine (MVS Only)

Random Retrieval of a Member

To randomly retrieve a member, issue a READ-DIR call with that member’s 8-
byte name in the member-area. If a zero return code is returned, issue GET calls
until the end of the member is indicated by return code 12 in VAL46-49, or you
no longer want to retrieve any more records from that member.

EQU MEMBER-AREA WST1-8
EQU RECORD-AREA WST9-88
 MOVE C'ASMFCL ' TO MEMBER-AREA
 CALL QUIKPDS C'READ-DIR' MEMBER-AREA
 IF VAL46-49 EQ C'0004' /* Member not found?
 ABEND.
050 CALL QUIKPDS C'GET' RECORD-AREA
 IF VAL46-49 EQ C'0012' /* End of the member?
 GO TO 900. /* Yes, go CLOSE the PDS.
 MOVE RECORD-AREA TO PRT1
 MOVE MEMBER-AREA TO PRT81
 PRINT
 GO TO 050 /* Go get another record.

Updating a Member

To retrieve all members of a PDS, and update each member, open the PDS for
updating (OPEN-UPD), establish an area (READ-DIR with member), then
retrieve (GET) each record within each member. In the example below, certain
positions are updated with a constant, then the record is rewritten (PUT).
Checks are made for end of directory, as well as end of member conditions. At
end of job, the PDS is closed.

6–72 VISION:Report Reference Guide

QUIKPDS — PDS and PDS/E Routine (MVS Only)

 * *
 * READ A PDS(/E) FILE, ALL MEMBERS, AND UPDATE *
 * THE FIRST 5 RECORDS WITHIN EACH MEMBER. *
 * *

 EQU MEMBER WST1-8 SPACES
 EQU CARD WST9-109 SPACES
 EQU CARDIN WST110-209 SPACES
 EQU COUNT WST300-301-P
 REPORT CARD
 MOVE C'MEMBER:' TO HDA12
 CALL QUIKPDS C'OPEN-UPD' C'QUIKPDS2' /* Open for update
010 CALL QUIKPDS C'READ-DIR' MEMBER /* Establish area
 IF @VAL-RETURN-CD EQ C'0008' /* End of directory?
 GO TO 900. /* .. Yes, goto EOJ
 MOVE ZERO TO COUNT
 MOVE MEMBER TO HDA21
 DOHEADERS
040 CALL QUIKPDS C'GET' CARDIN /* Get record in
 IF @VAL-RETURN-CD EQ C'0012' /* End of member?
 GO TO 10. /* .. Yes, get next member
 IF COUNT EQ P'5'
 GO TO 10. /* Do only 5
 MOVE C'***I DID IT***' TO WST130 /* Update this field
 CALL QUIKPDS C'PUT' CARDIN /* Update record
 MOVE CARDIN TO CARD
 ADD P'1' TO COUNT
 PRINT REPORT
 GOTO 40 /* Get next record w/in mem
900 CALL QUIKPDS C'CLOSE'
 GOTO EOJ
9999END

Error Messages

The following is a list of error messages that can be issued with a U0004
ABEND when fatal errors occur:

Message Description

***QUIKPDS - OPEN ERROR PDS is currently opened for read
only. You will need to close the PDS,
and then reopen with the function
OPEN-UPD.

***QUIKPDS - PUT INVALID UNLESS
OPEN-UPD IS CODED

PDS is currently opened for read
only. You will need to close the PDS,
and then reopen with the function
OPEN-UPD.

Optional Material 6–73

QUIKPDS — PDS and PDS/E Routine (MVS Only)

Message Description

***QUIKPDS - MEMBER AREA BLANK
WITH RANDOM SEARCH

This message occurs only if you have
modified the section of the QUIKPDS
program by the label READEQUL,
which is documented in the source
program. The original QUIKPDS does
not allow random positioning on a
member twice in succession.

***QUIKPDS - NO MEMBER-AREA
ESTABLISHED

A member-area must be established
with a READ-DIR call before a GET
call can be attempted.

***QUIKPDS - INVALID PARAMETERS
DETECTED

The parameter list received is invalid.
Refer to the section on calls and their
operands.

***QUIKPDS - TRYING TO READ PAST
END

An attempt was made to read past
the end of the directory or the end of
a member.

Note: If you do not consider the following recommendations, QUIKPDS can
violate IBM standards and unpredictable results can occur.

■ Read all the records of a member until you get the C'0012' end of member
return code.

■ For random retrieval, read the entire member.

6–74 VISION:Report Reference Guide

QUIKRPT — Multiple Reports Processor

QUIKRPT — Multiple Reports Processor
QUIKRPT provides extended reporting capabilities. VISION:Report supports
one user report file on SYSPRINT or SYSLIST execution. QUIKRPT can support
up to seven additional report files concurrently in the same execution of
VISION:Report. It is a callable subroutine that provides support for commonly
needed report features similar to VISION:Report. Check with the system
programmer who installed VISION:Report to determine what customizations
were made.

Using QUIKRPT, you can specify the following kind of declaratives: Report
Headers and Linecount value. This is usually done one time in the housekeeping
portion of the program. Other options include writing of print lines, page
overflow, and printing of headers, as well as doing a CLOSE at end of job.

You pass report information to QUIKRPT by coding calls which include:

■ The function to be performed.

■ The values associated with the function.

■ The report number to which the call applies.

The use of the ACCUM and BREAK, REPORT, PRINT REPORT, and other
statements associated only with the REPORT verb are restricted in conjunction
with any of the QUIKRPT files.

QUIKRPT Call Formats

In each of the QUIKRPT CALL formats noted, the last parameter shown (in
parentheses) indicates the report number desired. The parameter is optional
and, if omitted, defaults to RPT1. The only valid entries for the report number
parameter are RPT1 through RPT7.

Declarative Functions

HDR Function — Header Locations

CALL QUIKRPT C'HDR' hdr1 hdr2 hdr3.....hdr8 (C'RPTn')

The HDR function defines the number of report headers and their respective
locations. Up to eight heading lines can be specified for each report file used.
Enter the VISION:Report field definition or beginning address of each heading
area, in printing sequence, in the CALL statement. If none is entered, two blank
lines are printed at the top of the form. The optional file name (default is RPT1)
is the last parameter of the CALL statement.

Optional Material 6–75

QUIKRPT — Multiple Reports Processor

Each header line is assumed to be at least 133 positions long, with the first
position being an ASA carriage control character. Your data is assumed to occur
in positions 2 through 133 of each line. Any valid ASA control character code
can be used in the first position. The most common ones are listed below:

 blank Single-space before printing line.

 0 Double-space before printing line.

 - Triple-space before printing line.

 + Suppress spacing before printing line.

 1 Skip to channel 1 before printing.

QUIKRPT stores and tracks of the header address locations in memory. The
header information must be maintained throughout the use of the report. You
can modify the heading by performing another CALL HDR to the same RPTn
number; this refreshes the number and locations of header line data.

When you change the value in a header line, you do not have to make another
CALL QUIKRPT C'HDR'.

■ There is no limit on the number of times QUIKRPT can be called for any file
(RPT1 - RPT7).

■ Last call is in effect.

■ The number and location of headers are maintained, and reflect the last call.

■ You can change the header contents, header order, and number of headers.

Prior to printing the first heading line, QUIKRPT scans each header for the
following reserved arguments and replaces the contents as follows:

Argument Action Taken

$IPLDAT$ Current date in the form of MM/DD/YY

$IPLDYYYY$ Current date in the form of MM/DD/YYYY

$DATE$ Current Julian date in the form of YY.DDD

$JDYYYY$ Current Julian date in the form of YYYY.DDD

$JOBNAM$ Eight-character JOB-NAME

TIM Current time in the form of HH.MM

PG Four-digit, zero-suppressed page number

$PAGE$ Seven-digit, zero-suppressed page number

6–76 VISION:Report Reference Guide

QUIKRPT — Multiple Reports Processor

Imperative Functions

LCT Function — Linecount Location
CALL QUIKRPT C'LCT' line-loc (C'RPTn')

The LCT function defines the location of your LINECOUNT value for the report
indicated. The linecount must be in a 2-byte, packed format.

You must establish the linecount value prior to any imperative printing
functions. The initial linecount value is saved and used for the subsequent page
linecount value.

QUIKRPT decrements the linecount value by the appropriate number for each
line printed. When the value is negative, a page eject is performed and page
headers are printed.

If omitted, a default value of 60 is used.

SYSnnn Function (VSE Only)
CALL QUIKRPT C'SYSnnn' (C'RPTn')

The SYSnnn value defines the programmer logical unit SYS-number for the
report indicated. The nnn must be specified as three numeric digits. The
following SYS-numbers are used as the default:

RPT1 SYS005
RPT2 SYS006
RPT3 SYS007
RPT4 SYS008
RPT5 SYS009
RPT6 SYS010
RPT7 SYS011

Example of changing RPT1 from the default of SYS005 to SYS021, and RPT2
from SYS006 to SYS022:

CALL QUIKRPT C'SYS021' /* Change RPT1 to SYS021
CALL QUIKRPT C'SYS022' C'RPT2' /* Change RPT2 to SYS022

In the QUIKRPT program example shown at the end of this section, the two
statements above would be placed immediately before statement 100. SYS021
and SYS022 would then have to be assigned to the appropriate printers in your
JCL.

Optional Material 6–77

QUIKRPT — Multiple Reports Processor

Write Printline Function
CALL QUIKRPT printline-loc (C'RPTn')

The printline function assumes that, if the first parameter in a call is not any of
the valid function codes, the data specified in the first parameter is printed. The
first position of the line (printline-loc) must contain a valid ASA control
character. The data is assumed to be in positions 2 through 133.

QUIKRPT blanks the entire printline data area (including the first ASA byte)
after issuing the print command. The linecount is decremented by 0, 1, 2, or 3
depending upon the ASA control character indicator.

DOHDR Function — Page Headers
CALL QUIKRPT C'DOHDR' (C'RPTn')

DOHDR function prints the report headings at the top of the next page. This
applies to the RPTn specified, with the appropriate page number incremented
and linecount value reset as specified. This operation is not required unless you
purposely want to start on a new page.

CLOSE Function
CALL QUIKRPT C'CLOSE' (C'RPTn')

QUIKRPT issues a CLOSE macro for this function which is normally requested
at end of job. This must be done to ensure proper report file integrity. If a RPTn
is specified, a CLOSE for that report file only is performed.

When a CLOSE with no other operand is specified, a CLOSE is issued for all
RPTn files used in this particular run.

QUIKRPT Example

The following JCL and VISION:Report statements illustrate the use of QUIKRPT
producing two reports, in addition to the detail report printed from
VISION:Report. The following numbers correspond to the VISION:Report
statement numbers used in the example, and briefly describe the functions in
conjunction with QUIKRPT:

Statement
Number

Description

 20 Read report header data from statements and store in WST area,
two statements equal one header line. Report #1 has two headers
located at WST1 and WST161. Report #2 has two headers
located at WST321 and WST481.

6–78 VISION:Report Reference Guide

QUIKRPT — Multiple Reports Processor

Statement
Number

Description

 50 Initial linecount values for RPT1 and RPT2. Indicate linecount
locations to QUIKRPT, as well as headings.

 100 Get input records, process, and print detail report.

 150 An exception record is formatted in the PRT area and QUIKRPT
is called to print the line to RPT1.

 200 Call for closing of reports and EOJ.

 300 On a BREAK, a summary total line is printed with QUIKRPT
using RPT2, with the line formatted in the SAV area using index
pointer PTA.

MVS JCL Example
//QUIKRPT JOB 999,REPORT OPEN ORDER
//STEP EXEC PGM=QUIKJOB
//STEPLIB DD DSN=your.rpt.loadlib,DISP=SHR
//SYSPRINT DD SYSOUT=A VISION:Report DETAIL REPORT
//RPT1 DD SYSOUT=A RPT1 EXCEPTION
//RPT2 DD SYSOUT=A RPT2 SUMMARY
//SYSUT1 DD DSN=ORDMSTR,DISP=SHR
//SYSIN DD *
OPTION SEQCHK=NO,PRNTLCT=78

VSE JCL Example
// JOB QUIKRPT OPEN ORDER REPORTS
 // DLBL filename,'your.rpt.lib'
 // EXTENT SYS001,vvvvvv
 // LIBDEF *,SEARCH=(lib.sublib)
 // ASSGN SYSLST,00E VISION:Report DETAIL REPORT
 // ASSGN SYS005,01E RPT1 EXCEPTION
 // ASSGN SYS006,02E RPT2 SUMMARY
 // ASSGN SYS010,280 INF DEVICE
 // TLBL ORDMSTR,'etc'
 // EXEC QUKBJOB
 OPTION SEQCHK=NO,PRNTLCT=78
 INFTAPE30000100SSYS010 LBL=ORDMSTR
 DETCARD

Optional Material 6–79

QUIKRPT — Multiple Reports Processor

VISION:Report Statements
HDR 1A 1 $IPLDAT$ OPEN ORDER DETAIL PAGEPG
 HDR 2A ORDER-NR CUST-NAME DATE AMOUNT
 BREAK 1 INF1-6 SB 0 SA 1 PRINT C'**' IN TOT POS 67
 SET PTA WST1 /* Set index PTR to WST.
20 GET DET ATEND 50 /* Read rpt HDR lines.
 MOVE DET1-80 TO PTA1 /* Will be stored in WST.
 SET PTA UP 80 /* Bump index by 80.
 GOTO 20 /* Go get next HDR.
50 MOVE C'78' TO SAV1-2-P /* Lct value for RPT1.
 MOVE C'78' TO SAV3-4-P /* Lct value for RPT2.
 CALL QUIKRPT C'LCT' SAV1 /* Indicate lct.
 CALL QUIKRPT C'LCT' SAV3 C'RPT2' /* Lct to RPT1 & RPT2.
 CALL QUIKRPT C'HDR' WST1 WST161 /* Indicate HDRs.
 CALL QUIKRPT C'HDR' WST321 WST481 C'RPT2'

100 GET INF ATEND 200
 CHECKBREAKS ON BREAK PERFORM 300 THRU 400
 IF INF7-12 IS LT VAL56-61 /* Test for exception.
 GOTO 150. /* Go process exception.
 ACCUM INF13-18-P IN A 6 BYTE CTA, ON BREAK PRINT IN POS 51 2C
 MOVE INF1-6 TO PRT2 /* MOVE data
 MOVE INF21-40 TO PRT12 /* Fields
 MOVE INF7-12 TO PRT36 F /* To
 MOVE INF13-18-P TO PRT51 2C /* PRT.
 MOVE INF1-6 TO SAV5-10 /* Save order
 MOVE INF21-40 TO SAV11-30 /* And name.
 PRINT /* PRINT detail line.
 GOTO 100 /* Go GET next record.
150 MOVE INF1-6 TO PRT2 /* MOVE
 MOVE INF7-12 TO PRT36 F /* Record data
 MOVE INF31-40 TO PRT12 /* Exception
 MOVE INF13-18-P TO PRT51 2C /* To PRT area.
 CALL QUIKRPT C'RPT1' /* PRINT to 'RPT1'.
 GOTO 100 /* Go GET next record.

200 CALL QUIKRPT C'CLOSE' /* Issue CLOSE.
 GOTO EOJ /* And go to EOJ.

300 IF VAL180 IS EQU TO C'F' /* Bypass on final.
 GOTO 400.
 MOVE SPACE TO SAV31-170 /* Blank SAV area.
 SET PTA SAV32 /* Set index PTR.
 MOVE SAV5-10 TO PTA2 /* Move summary
 MOVE SAV11-30 TO PTA12 /* Data to SAV
 MOVE CTA3-8-P TO PTA51 2C /* For 'RPT2'.
 MOVE C'0' TO SAV31 /* ASA control for double-space.
 CALL QUIKRPT SAV31 C'RPT2' /* PRINT 'RPT2'.

400 EXIT /* Exit.
900 END

. Headers input is entered here.
.
/*

6–80 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

QUIKTABL — Automated Tabling Routine
QUIKTABL is a VISION:Report subroutine designed to give extensive table
handling capability to MVS and VSE users. The following fully automated
functions are supported for up to 16 concurrent tables:

■ Table load / reload / delete.

■ Sequential retrieval (any starting point).

■ Random retrieval.

■ Serial search based on any key.

- Starting from the beginning.

- Starting at any entry number in the table.

■ Binary search based on any key.

Typical applications for QUIKTABL might be:

■ Load a description file into a table and retrieve entries by key.

■ Build and maintain a bank of accumulators having a one-to-one relationship
with some variable such as department number or state code.

■ Buffer input records and retrieve later for processing.

QUIKTABL is a 6K routine that is invoked using a CALL statement in
procedure logic. You supply a few pieces of information, such as the amount of
space for all tables to be handled by QUIKTABL, entry length, and the location
of the data to be stored. After the table is loaded, you need only supply the
entry number at which to start retrieval, or the key length and location on which
to search.

Load a Table

If you want to store entries (fixed length only) in a table, the following
procedure should be used:

■ Determine the amount of memory that QUIKTABL should require for the
table(s). The area allocated must be larger than the number of bytes needed
to hold the table entries. This is because of control information used by
QUIKTABL. For more information, see Determine the Proper Size of the
Table Area.

■ Set up the following table control block in a save area or working storage
area. The save area is more convenient to use since it does not interfere with
other uses of the working storage area.

Optional Material 6–81

QUIKTABL — Automated Tabling Routine

* SAVE AREA
* TABLE CONTROL BLOCK AREA
EQU TBL-CNTL-BLK SAV001-048 /*
EQU OPCODE SAV001-004 C'PUT ' /*Table operation
EQU TABLENUM SAV005-005-B X'00' /*0-15
EQU ENTRYLEN SAV006-007-B X'28' /*1-32767
EQU ENTRYNUM SAV008-009-B X'01' /*1-32767
EQU KEYLENGTH SAV010-010-B X'01' /*1-255
EQU KEYLOCN SAV011-011-B X'01' /*1-255
EQU TABLESZE SAV012-015-B X'0F48' /*1024-8M
EQU RETCODE SAV016-016-B X'00' /*Return code
EQU MESSAGE SAV017-048 SPACES /*Error msg area

Where

■ OPCODE specifies the function to be done by QUIKTABL. It can have the
value of PUT, GET, REPL, FIND, FINR, SRCH, DELT.

■ TABLENUM specifies the table number. It can have a value in the range of 0
to 15.

■ ENTRYLEN specifies the length of each entry. It can have a value in the
range of 1 to 32767.

■ ENTRYNUM specifies the entry number to be stored or retrieved. It can
have a value in the range of 1 to 32767.

■ KEYLENGTH specifies the length of the key in the entry. It can have a value
in the range of 1 to 255. A value is required here only for FIND, FINR, or
SRCH operations.

■ KEYLOCN specifies the location of the key in the table entry. It can have a
value in the range of 1 to 255. A value is required only for FIND, FINR, or
SRCH operations.

■ TABLESZE specifies the size of the table area to be used by QUIKTABL and
can have a value in the range of 1024 bytes to 8 megabytes.

■ RETCODE holds the return code passed back by QUIKTABL to indicate the
success of the request:

6–82 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

Code Description

0 Successful completion.

1 End of table reached on a retrieval or entry number beyond final
table entry.

2 Entry not found (FIND, FINR, SRCH operations).

6 Invalid entry length (PUT operation).

7 Requested table number not found.

8 Table area is full.

9 Invalid/missing parameter or operation code.

■ MESSAGE holds an error description returned by QUIKTABL in the event
of an unsuccessful operation. To print this message, code procedure logic
statements to cause the entries to be loaded into a table. Read the file
containing the entries, then invoke QUIKTABL through the CALL facility,
passing it three parameters:

- The field name of the QUIKTABL control block.

- A literal of 4 zeros (X'00000000').

- The field name of the entry to be stored.

Optional Material 6–83

QUIKTABL — Automated Tabling Routine

Example 1

Create a table of 40-byte account number/account name entries. The first
five bytes of the entry contain the account number, followed by a 35-byte
account name. Store the entries in the table on the second input file. DET is
defined in the save area and the table entry is defined in the work area.

OPTION SEQCHK=NO
*
* AR FILE
EQU IN-AR-REC INF001-352
EQU ACCTNO INF004-008
*
* AR MAILING FILE
EQU IN-M-AR-REC DET001-352
EQU M-ACCTKEY DET001-003
EQU M-ACCTNO DET004-008
EQU M-ACCTNAME DET050-084
* WORKING STORAGE AREA
* WST TABLE ENTRY
EQU WORK-AREA-1 WST000-000
EQU WS-ACCTNO (05) /*
EQU WS-ACCTNAME (35) /*
EQU WS-TBL-REC WST001-040 /* Redefine above flds to tbl ent
*
* SAVE AREA
* TABLE CONTROL BLOCK AREA
EQU TBL-CNTL-BLK SAV001-048 /*
EQU OPCODE SAV001-004 C'PUT ' /*
EQU TABLENUM SAV005-005-B X'00' /* 0-15
EQU ENTRYLEN SAV006-007-B X'28' /* 1-32767
EQU ENTRYNUM SAV008-009-B X'01' /* 1-32767
EQU KEYLENGTH SAV010-010-B X'01' /* 1-255
EQU KEYLOCN SAV011-011-B X'01' /* 1-255
EQU TABLESZE SAV012-015-B X'0F48' /* 1024-8M
EQU RETCODE SAV016-016-B X'00' /*
EQU MESSAGE SAV017-048 SPACES /* Error msg area
050 MOVE C'PUT' TO OPCODE /* Init tbl cntl blk for load
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'3912' TO TABLESZE /* Size of table
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
100 GET DET ATEND 200 /* Load table
*
 MOVE M-ACCTNO TO WS-ACCTNO /* Move flds to work area
 MOVE M-ACCTNAME TO WS-ACCTNAME
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC
*
 IF RETCODE GT X'00' /* If rc not zero
 GOTO 900. /* Tbl load error rtn (&EOJ)
*
 GOTO 100. /* Else cont load
*
200 ...CONTINUE PROCESSING...

6–84 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

The logic at sequence number 050 shows how the table control block can be
initialized. At sequence number 100, the detail file is read until end of file time.
Account number and account name are moved to a table entry area in working
storage. The call to QUIKTABL loads the next table entry into the table. After
each call to QUIKTABL, query the return code to ensure that the desired action
took place successfully. Non-zero return codes should be handled as is
appropriate for that table operation.

Example 2

This example enhances Example 1 by loading a second table. When handling
multiple tables, the same table control block area is used, so special care must be
taken that OPCODE, TABLENUM, ENTRYLEN, ENTRYNUM, KEYLENGTH,
and KEYLOCN are set correctly for each call to QUIKTABL.

OPTION SEQCHK=NO
*
* AR FILE
EQU IN-AR-REC INF001-352
EQU ACCTNO INF004-008
*
* AR MAILING FILE
EQU IN-M-AR-REC DET001-352
EQU M-ACCTKEY DET001-003
EQU M-ACCTNO DET004-008
EQU M-ACCTNAME DET050-084
*
* AR KEY DESCRIPTION FILE
EQU IN-K-AR-REC INC001-053
EQU K-ACCTKEY INC001-003
EQU K-DESC INC004-053
* WORKING STORAGE AREA
EQU WORK-AREA-1 WST000-000
EQU WS1-ACCTNO (05) /*
EQU WS1-ACCTNAME (35) /*
EQU WS2-ACCTKEY (03) /*
EQU WS2-DESC (50) /*
*
EQU WS1-TBL-REC WST001-040 /* Redefine above flds to tbl ent
EQU WS2-TBL-REC WST041-093 /* Redefine above flds to tbl ent
* SAVE AREA
* TABLE CONTROL BLOCK AREA
EQU TBL-CNTL-BLK SAV001-048 /*
EQU OPCODE SAV001-004 C'PUT ' /*
EQU TABLENUM SAV005-005-B X'00' /* 0-15
EQU ENTRYLEN SAV006-007-B X'28' /* 1-32767
EQU ENTRYNUM SAV008-009-B X'01' /* 1-32767
EQU KEYLENGTH SAV010-010-B X'01' /* 1-255
EQU KEYLOCN SAV011-011-B X'01' /* 1-255
EQU TABLESZE SAV012-015-B X'1B0A' /* 1024-8M
EQU RETCODE SAV016-016-B X'00' /*
EQU MESSAGE SAV017-048 SPACES /* Error msg area
050 MOVE C'PUT' TO OPCODE /* Init tbl cntl blk for load
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'6922' TO TABLESZE /* Size of table
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*

Optional Material 6–85

QUIKTABL — Automated Tabling Routine

100 GET DET ATEND 200 /* Load table
*
 MOVE M-ACCTNO TO WS1-ACCTNO /* Move flds to work area
 MOVE M-ACCTNAME TO WS1-ACCTNAME
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS1-TBL-REC
*
 IF RETCODE GT ZERO /* If rc not zero
 GOTO 900. /* Tbl load error rtn (&EOJ)
*
 GOTO 100. /* Else cont load
*
200 MOVE C'1' TO TABLENUM /* 2nd table
 MOVE C'53' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st entry
*
250 GET INC ATEND 300 /* Load table
*
 MOVE K-ACCTKEY TO WS2-ACCTKEY /* Move flds to work area
 MOVE K-DESC TO WST2-DESC
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS2-TBL-REC
*
 IF RETCODE GT ZERO /* IF rc not zero
 GOTO 900. /* Tbl load error rtn (&EOJ)
*
 GOTO 250. /* Else cont load
*
300 ... CONTINUE PROCESSING ...

If you want to retrieve a specific entry by key, starting at the beginning of the
table, code the following in your program statements:

■ Modify the same control block you used for loading the table:

- Move a FIND to OPCODE in the control block.

- If you have not set them up initially in the control block definitions,
move the correct values to the KEYLENGTH and KEYLOCN fields.

■ Invoke QUIKTABL, passing it four parameters:

- The field name of the QUIKTABL control block.

- A literal of 4 zeros (X'00000000').

- The field name of the area where the found entry is to be placed.

- The field name of the search key.

■ Optionally, check the return code for a found/not found condition:

- 0 = entry found

- 2 = entry not found

6–86 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

Example

Using the table created in Example 1 in the previous section, retrieve an account
number/account name entry based on a five-byte account number field from
the input master file INF. The five-byte account number starts in the fourth byte
of the master file. If the entry is found, QUIKTABL moves it to working storage,
as specified in the parameter list.

200 MOVE C'FIND' TO OPCODE /* Init tbl cntl blk for find
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'5' TO KEYLENGTH /* Length of search key
 MOVE C'1' TO KEYLOCN /* Start position of key
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
210 GET INF ATEND 990 /* Read next master rec
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC ACCTNO

*
 IF RETCODE EQ X'00' /* If entry found
 GOTO 220. /* BR AR
 IF RETCODE EQ X'02' /* If entry not found
 GOTO 910. /* Missing entry error msg
 GOTO 920 /* Else other error msg
*
220 ...CONTINUE PROCESSING
 GOTO 210

Retrieve an Entry by Key — Starting at a Specified Entry Number and then Doing
a Serial Search

You might want to locate a specific entry by key, but you might not want to
start at the beginning of the table. This might be the case if you are retrieving
multiple occurrences of entries with the same key, or if you know that a
particular entry has to be at or after a certain entry number. Code the following
in your procedure statements:

■ Modify the same control block you used for creation of the table:

- Move a FINR (Find Resume) to OPCODE in the control block.

- If you have not set them up initially in the control block definitions,
move the appropriate values to the KEYLENGTH and KEYLOCN
fields.

- Move the appropriate entry number at which to start the search to the
ENTRYNUM field.

■ Invoke QUIKTABL, passing it four parameters:

- The field name of the control block.

- A literal of 4 zeros (X'00000000').

- The field name of the area where the found entry is to be placed.

Optional Material 6–87

QUIKTABL — Automated Tabling Routine

- The field name of the key for which you want QUIKTABL to search.

■ Optionally, check the return code in the control block for a found/not found
or beyond range condition:

- 0 = found

- 1 = beyond end of table

- 2 = not found

Example

This example uses a table where the entries contain an account number key that
is in ascending sequence. The input master file is also in account number
sequence. Since the account number is in sequence, use FINR to start a search
from the next entry number following the last account number found.

200 MOVE C'FINR' TO OPCODE /* Init tbl cntl blk for finr
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'0' TO ENTRYNUM /* 1st table entry, minus 1
 MOVE C'5' TO KEYLENGTH /* Length of search key
 MOVE C'1' TO KEYLOCN /* Start position of search key
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
210 GET INF ATEND 990 /* Read next master rec
*
 ADD C'1' TO ENTRYNUM /* Inc table entry number
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC ACCTNO
*
 IF RETCODE EQ X'00' /* If entry found
 GOTO 220. /* Found match
 IF RETCODE EQ X'02' /* If entry not found
 GOTO 910. /* Missing entry error msg
 GOTO 920 /* Else other error msg
*
220 ...CONTINUE PROCESSING
 GOTO 210

Retrieve Each Entry Starting from the Beginning

If you want to retrieve each entry in a table, one after the other, code the
following in your procedure statements:

■ Modify the same control block you used for the loading of the table:

- Move GET to OPCODE in the control block.

- If this is the first entry to be retrieved, move 1 to ENTRYNUM in the
control block; otherwise, leave the entry number alone. QUIKTABL
increments the entry number automatically as it retrieves the entry, so
subsequent GET functions retrieve the next entry.

6–88 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

■ Invoke QUIKTABL, passing it three parameters:

- The field name of the control block.

- A literal of 4 zeros (X'00000000').

- The field name of the area where the found entry is to be placed.

■ Optionally, check the return code in the control block for an end of table
condition (RETCODE EQ X'01').

Example

Retrieve each entry from the account number/name table beginning with entry
number 1. Have each entry returned to working storage.

Note that moving the 1 to the ENTRYNUM field and the GET to the OPCODE
field are one-time-only statements.

200 MOVE C'GET' TO OPCODE /* Init tbl cntl blk for get
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'0' TO RETCODE /* clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
210 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC
*
 IF RETCODE EQ X'00' /* If entry found
 GOTO 220. /* BR AR
 IF RETCODE EQ X'01' /* If end-of-table
 GOTO 300. /* BR to eot proc.
 GOTO 940 /* Else other error msg
*
220 ...CONTINUE PROCESSING
 GOTO 210

Retrieve a Particular Entry by Entry Number

If you want to retrieve a particular entry by entry number in a table, code the
following in your procedure statements:

■ Modify the same control block you used for the loading of the table:

- Move GET to OPCODE in the control block.

- Move the entry number of the entry to be retrieved to the ENTRYNUM
field.

■ Invoke QUIKTABL, passing it three parameters:

- The field name of the control block.

- A literal of 4 zeros (X'00000000').

- The field name of the area where the found entry is to be placed.

Optional Material 6–89

QUIKTABL — Automated Tabling Routine

■ Optionally, check the return code in the control block for successful
completion:

- 0 = record retrieved

- 1 = end of table

Example

Retrieve the eighth entry in the account number/name table.

 MOVE C'GET' TO OPCODE
 MOVE C'8' TO ENTRYNUM
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC

Binary Search for a Particular Entry by Key

If you have a table of 20 entries or more that are in ascending sequence by key,
you could perform a binary instead of a serial search. For such a table, a binary
search is much faster than a serial search. Code the following in your procedure
statements:

■ Modify the same control block you used for the loading of the table:

- Move SRCH to OPCODE in the control block.

- If you have not set them up initially in the control block definitions,
move the correct values to the KEYLENGTH and KEYLOCN fields.

■ Invoke QUIKTABL, passing it four parameters:

- The field name of the QUIKTABL control block.

- A literal of 4 zeros (X'00000000').

- The field name of the area where the found entry is to be placed.

- The field name of the key in the record (not entry) to be retrieved.

■ Optionally, check the return code in the control block for a found/not found
condition:

- 0 = found

- 2 = not found

6–90 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

Example

Retrieve a particular entry by account number key using the binary search
technique. The search key is account number.

200 MOVE C'SRCH' TO OPCODE /* Init tbl cntl blk for bin srch
 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'40' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'5' TO KEYLENGTH /* Length of search key
 MOVE C'1' TO KEYLOCN /* Start position of key
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
210 GET INF ATEND 990 /* Read next master rec
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC ACCTNO
*
 IF RETCODE EQ X'00' /* If entry found
 GOTO 220. /* BR AR
 IF RETCODE EQ X'02' /* If entry not found
 GOTO 910. /* Missing entry error msg
 GOTO 920 /* Else other error msg
*
220 ...CONTINUE PROCESSING...
 GOTO 210

Replace an Entry in a Table

If you want to update a particular entry in a table, code the following in your
procedure statements:

■ Modify the same control block you used for loading the table:

- Move REPL to the OPCODE field.

- Move the entry number of the entry you want replaced to the
ENTRYNUM field, if it does not already contain it.

■ Invoke QUIKTABL, passing it three parameters:

- The field name of the QUIKTABL control block.

- A literal of 4 zeros (X'00000000').

- The field name of the entry that is to replace the old entry.

■ Optionally, check the return code field in the control block for successful
completion:

- 0 = successful completion.

- 1 = entry number greater than number of entries in table.

Optional Material 6–91

QUIKTABL — Automated Tabling Routine

Example

Each entry in a table contains a three-byte packed counter starting in location
41-43 (WSCOUNTER). A particular entry’s counter field is incremented by 1 if
its key (location 1) matches a key contained in the first five bytes of the input
record (ACCTNO). In order to update the entry, it is first retrieved by the FIND
operation code; then it is replaced after the counter has been incremented:

* WORKING STORAGE AREA
* WST TABLE ENTRY
EQU WORK-AREA-1 WST000-000
EQU WS-ACCTNO (05) /*
EQU WS-ACCTNAME (35) /*
EQU WS-COUNTER (03)-P /*
EQU WS-TBL-REC WST001-043 /* Redefine above flds to tbl ent
*
190 MOVE C'0' TO TABLENUM /* 1st table
 MOVE C'43' TO ENTRYLEN /* Entry length
 MOVE C'1' TO ENTRYNUM /* 1st table entry
 MOVE C'5' TO KEYLENGTH /* Length of search key
 MOVE C'1' TO KEYLOCN /* Start position of search key
*
200 MOVE C'FIND' TO OPCODE /* Init tbl cntl blk for find
 MOVE C'0' TO RETCODE /* Clr rc
 MOVE SPACES TO MESSAGE /* Clr msg
*
210 GET INF ATEND 990 /* Read next master rec
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC ACCTNO
*
 IF RETCODE EQ X'00' /* If entry found
 GOTO 220. /* BR AR
 IF RETCODE EQ X'01' /* If entry not found (eot)
 GOTO 910. /* Missing entry error msg
 GOTO 920 /* Else other error msg
*
220 ADD C'1' TO WS-COUNTER /* Inc ctr for this acct nbr
*
 MOVE C'REPL' TO OPCODE /* Init tbl cntl blk for replace
*
 CALL QUIKTABL TBL-CNTL-BLK X'00000000' WS-TBL-REC
*
 IF RETCODE GT X'00' /* If entry not replaced
 GOTO 940. /* Then replace error
*
230 ...CONTINUE PROCESSING
 GOTO 200

Delete a Table

You might want to delete a table in order to rebuild the table or to free up space
in the table work area. To delete a table, code the following in your procedure
statements:

■ Modify the same control block you used for the loading of the table:

- Move a DELT to the OPCODE field of the QUIKTABL control
block.

6–92 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

■ Invoke QUIKTABL, passing it three parameters:

- The field name of the QUIKTABL control block.

- A literal of 4 zeros (X'00000000').

- Any valid subparameter to satisfy QUIKTABL’s parameter
requirement.

Example

Delete table number 1 in order to free up the space in the table area. Assume the
table number is already in the table number field of the control block.

MOVE 'DELT' TO OPCODE
CALL QUIKTABL OPCODE X'00000000' OPCODE

User Error Checking and Handling

QUIKTABL indicates the result of each request in the return code (RETCODE)
field of the control block area. Check this return code following each CALL to
QUIKTABL.

06 - Invalid Entry Length.

Message Description

Cause On a PUT (load) operation, the ENTRYLEN field in the control
block contains a value less than 1 or greater than 32767.

Result The PUT is not performed and QUIKTABL returns a message in
the MESSAGE field of the control block, along with a return code
of 6 in the RETCODE field. If you ignore the error and repeat the
operation, the program continues returning a 6.

Action You should correct the entry length value and rerun the program.

07 - Requested Table Not Found.

Message Description

Cause A retrieve, replace, or delete operation is being specified for a
table that does not exist.

Optional Material 6–93

QUIKTABL — Automated Tabling Routine

Message Description

Result The requested operation is not performed and QUIKTABL
returns a message in the MESSAGE field of the control block,
along with a return code of 7 in the RETCODE field. If you ignore
the error and repeat the operation, the program continues
returning a 7.

Action You should provide the correct table number and rerun the
program.

08 - Tabling Area is Full.

Message Description

Cause A PUT operation has been requested, but there is insufficient
room in the table area.

Result The entry is not stored and QUIKTABL returns a message in the
MESSAGE field of the control block, along with a return code of 8
in the RETCODE field. If you ignore the error and attempt to
store another entry, QUIKTABL abends with a data exception.

Action You should allocate additional table space by increasing the
amount in the TABLESZE field of the QUIKTABL control block.
You should then rerun the program.

09 - Invalid/Missing Parameter or Opcode.

Message Description

Cause One or more of the required parameters for a given operation
code, or the operation code itself, is either missing or invalid.

Result QUIKTABL abends with a data exception.

Action You should check the CALL statement(s) invoking QUIKTABL
and ensure that the correct number of parameters were passed
and that the parameters specified the correct areas for the
operation requested. Also, you should check the QUIKTABL
control block to make sure that the correct values or defaults were
present when the call to QUIKTABL was executed.

6–94 VISION:Report Reference Guide

QUIKTABL — Automated Tabling Routine

Determine the Proper Size of the Table Area

The size of the table work area is determined chiefly by the amount of data you
want to store. However, additional data required for table management is also
placed in the table area by QUIKTABL, so the allocation must be greater than
the number of bytes required for user entries. Allow for a 512-byte control block
and two bytes per 510 bytes of tabling. At least 1024 bytes of work area must be
allocated. The following table is provided as a guide in deciding how large to
make the table area.

Table Size Max. Data Capacity

1024 510

2048 1530

4096 3570

8192 7650

16384 15810

32256 31620

65536 64260

31072 129030

262144 258570

Optional Material 6–95

QUIKTIME — Time Subroutine

QUIKTIME — Time Subroutine
QUIKTIME returns the current time in HHMMSS and in units of 1/300 seconds.
Both fields are packed decimal.

CALL QUIKTIME RETURN-AREA

Term Description

RETURN-AREA Either a valid VISION:Report field definition or an equated
data name. The field must be 12 bytes long. After control is
returned from QUIKTIME, the format of return-area is:

■ Bytes 1-4 packed decimal = HHMMSS time format

■ Bytes 5-12 packed decimal = units of 1/300 seconds

Example

The following example calls QUIKTIME ten times and prints the time formats
returned.

OPTION LIST=YES,SEQCHK=NO
EQU WST-AREA WST
EQU TIME-HHMMSS (4)-P
EQU TIME-1_300-SEC (8)-P
EQU LOOP-COUNTER (2)-P ZEROES
TITLE 'TIME FORMATS RETURNED BY QUIKTIME'
REPORT TIME-HHMMSS TIME-1_300-SEC
010 IF LOOP-COUNTER EQ P'10'
 GO TO EOJ.
 CALL QUIKTIME TIME-HHMMSS
 PRINT REPORT
 ADD C'1' TO LOOP-COUNTER
 GO TO 010
999 END

6–96 VISION:Report Reference Guide

QUIKTRAN — ASCII/EBCDIC Translator

QUIKTRAN — ASCII/EBCDIC Translator
Many installations have a recurring or occasional requirement to translate the
data representation of a file (that is, ASCII to EBCDIC or EBCDIC to ASCII).
The QUIKTRAN routine, invoked by a single CALL statement, provides you
with the ability to automatically translate to other representations.

The translate table module/phase defaults are QUBKTRN for VSE and
QUIKTRNT for MVS. See QUIKTRNT —Translate Table (MVS Only)
QUKBTRN —Translate Table (VSE Only) for details.

File Data Translation Routine
005 MOVE C'200' TO WST1-2-B /* Make record length avail to QUIKTRAN.
010 GET /* GET the next recd to be translated.
 CALL QUIKTRAN C'ASCII-TO-EBCDIC' INF1 WST1-2 /* Translate record.
 MOVE INF1-200 TO OFA1-200 /* MOVE translated recd to output area.
 WRITE OFA /* WRITE the output record.
 GOTO 010 /* GO GET and translate next record.

 OP1 OP2 OP3
CALL QUIKTRAN C'ASCII-TO-EBCDIC' FLDDEF FLDDEF
 C'EBCDIC-TO-ASCII'

Each execution of a CALL QUIKTRAN causes the translation of one block of
data. The following coding illustrates the context in which QUIKTRAN would
be used.

Operands

■ If the input data is ASCII and is to be translated to EBCDIC, code C'ASCII-
TO-EBCDIC'. If the input is EBCDIC and is to be translated to ASCII,
code C'EBCDIC-TO-ASCII'. If a data representation other than ASCII or
EBCDIC is involved, this routine must be customized at installation. Refer
to the installation materials for customization instructions or to the systems
programmer who installed VISION:Report for other translation
representations.

Note: Some EBCDIC values have no direct translation into ASCII. In this
case, QUIKTRAN translates the character to a null (hex 00) character. For
this reason user caution is advised.

■ Code a VISION:Report field definition for the leftmost byte of the block of
data to be translated. As illustrated in the example above, the current INF
record would be the most common block of data, but any VISION:Report
area can be specified.

Optional Material 6–97

QUIKTRNT —Translate Table (MVS Only)
QUKBTRN —Translate Table (VSE Only)

■ Define a two-byte binary field containing the length of the data block to be
translated each time the call is executed. This length can be any number up
to 65535. For fixed length files, this requirement can be satisfied by setting
up a constant as in statement 005 of the example above. For variable length
files or unusual cases, this value can be calculated before each call.

Some areas should not be translated (such as, binary fields and the LLbb of
variable length records).

005 MOVE C'200' TO WST1-2-B /* Make record length avail to QUIKTRAN.
010 GET /* GET the next recd to be translated.
 CALL QUIKTRAN C'ASCII-TO-EBCDIC' INF1 WST1-2 /* Translate record.
 MOVE INF1-200 TO OFA1-200 /* MOVE translated recd to output area.
 WRITE OFA /* WRITE the output record.
 GOTO 010 /* GO GET and translate next record.

QUIKTRNT —Translate Table (MVS Only)
QUKBTRN —Translate Table (VSE Only)

The two tables, QUIKTRNT and QUKBTRN, are similar.

QUIKTRNT and QUKBTRN contain two 256-byte tables. The first table
translates data displayed in the first (character) line of a PRINTHEX or
PRINTCHAR output. The second table translates data in the second (zone) and
the third (numeric) lines of a PRINTHEX output.

Execution of PRINTHEX or PRINTCHAR uses the default table. If any alternate
tables have been installed in your system, you must identify the alternate table
to VISION:Report by OPTION TRLNAME= user-table-name.

QUIKVEQU — EQU Statements for VAL Area
In VISION:Report, a table of EQU statements for the VAL area is automatically
loaded during the compile phase. These EQU statements could have been
modified. Check with your system programmer for a printout of the new EQU
statements.

See the section EQU in Chapter 3 for a list of the default EQU statements
supplied for the VAL area.

Note: The table QUIKVEQU is for MVS and VSE. Prior to Release 16.0, it was
QUIKVEQU for VSE.

6–98 VISION:Report Reference Guide

QUKBLIB — VSE Library Interface (VSE Only)

QUKBLIB — VSE Library Interface (VSE Only)
The VSE Library program, QUKBLIB, is in the object and phase library which
was loaded when VISION:Report was installed. This is a VISION:Report
callable routine to allow sequential and random retrieval of VSE library
members in a read-only mode. QUKBLIB provides the VSE user with a
convenient method of retrieving one or more members from the library.
Sequential and random retrieval of library members are supported. Generic
retrieval of members (generic mode) is also permitted, and is specified by the
usage of an asterisk (*) within the member name or member type.

QUKBLIB is only supported in VSE environments that support the VSE LIBRM
macros facilities.

The following JCL for the QJLIB library containing ‘A.’ and ‘Q.’ members is
assumed in describing the various calling parameters. Members QUIKDATE.A,
and other members starting with the prefix of QUIK, as well as AMORTIZE.Q
are in the library.

// DLBL QJLIB,’QJ.LIB’
// EXTENT ,DOS004
// LIBDEF SOURCE,SEARCH=QJLIB.QJ150

The CALL statement presents basic parameter information to QUKBLIB. The
passing parameters can be either a literal or an equated field-name, although it
can be shown in either format. It is the function of the library subroutine to
interpret the parameters and build and issue the necessary I/O operations to
satisfy the requested functions. Typically, the user has to specify the following:

Operands

Term Description

Operation Code 8-byte field. What function or command is to be performed
(get a record, open a file, close a file.)

Library-Name 8-byte file name on the DLBL statement, padded with spaces
to the right as necessary (such as, QJLIB).

Sub-Library-
Name

8-byte sub-library name, padded with spaces to the right, as
necessary (such as, SOURCE).

Member-Name 8-byte member name that you want to start processing,
padded with spaces to the right as necessary. If an asterisk is
found, the generic mode is set. For example:

■ QUIKDATE to start processing this member.

■ ‘QUIK*’ to process all members with the prefix QUIK.

■ ‘*’ to process all members.

Optional Material 6–99

QUKBLIB — VSE Library Interface (VSE Only)

Term Description

Member-Type 8-byte member type, padded with spaces to the right, as
necessary. If an asterisk is found, the generic mode is set.
For example:

■ ‘Q’ to start processing all member types of Q.

■ ‘*’ to process all member types.

Chain ID 8-byte chain ID, padded with spaces to the right, as
necessary (such as, SOURCE).

Feedback-Area 132-byte feedback area. This is the communications area,
providing information on any possible errors, and is
established by the OPEN command. It consists of:

■ 2-byte binary Reason code

■ 2-byte-binary Return code

■ 8-byte Operation code causing error

■ 120-byte Error message

Refer to the IBM Systems Macros Reference Guide,
“Librarian Feedback Codes” for further details. If VAL46-49
(VISION:Report’s own return code area) is non-zero, check
the above error message and codes in order to diagnose the
error further. The 8-byte operation code can detail the exact
I/O operation that was being performed when the error
occurred.

Record-Area Work area for record to be read into.

New Member-
Name

8-byte new member-name. This is available only when both
member-name and member-type are ’*’ (generic mode). This
field is filled with the next member name when the last
record of the current member has been read; in the event of
an EOF condition, this field is filled with high values. This
field is required even when not in generic mode.

New Member-
Type

8-byte new member-type. This is available only when both
member-name and member-type are ’*’ (generic mode). This
field is filled with the next member type when the last
record of the current member has been read; in the event of
an EOF condition, this field is filled with high values. This
field is required even when not in generic mode.

Not all calls require each operand or parameter to be passed. The specific order
of the passing parameters must be adhered to. Not all passing parameters are
validated for correctness.

6–100 VISION:Report Reference Guide

QUKBLIB — VSE Library Interface (VSE Only)

The return codes in the feedback area are general in nature, with the higher
return codes usually more serious. If these return codes are 8 or higher,
consideration should be given to terminate the program. QUKBLIB adds its
own return codes in an effort to assist in pinpointing the problem.

The return codes in the feedback area are:

Code Description

0000 Successful completion. The service worked as requested.

0004 The requested function was performed, but an exceptional condition
exists, or the function was not performed, because the requested
result already exists.

0008 Some functions are not or only partially executed.

0012 The requested service could not be performed at all, because the
addressed library resource was not available.

0016 There is an externally controllable condition, such as lack of
resources or storage space, which resulted in the failure. The return
code is accompanied by a librarian message.

0020 An error condition has occurred as a result of internal librarian
processing. The return code is accompanied by a librarian message.

0032 Unauthorized access to a library object. The return code is
accompanied by a librarian message of L163I.

If a message is generated by the librarian as a result of return code 16 or higher,
it is passed back in the error message area of the feedback area.

Opening a Library
 CALL QUKBLIB C’OPEN’ C’library-name’ C’sub-library name’
 C’member-name’ C’member-type’ C’chain-id’ FEEDBACK-AREA

■ Only one library can be opened and processed at a time.

■ This CALL is required and must be the first CALL to QUKBLIB prior to any
processing. The feedback area is only established with the OPEN command,
as is the generic mode for member-name and member-type. Therefore, as an
example, if you want to change the feedback area or switch from generic
mode, you must issue a CLOSE command, and reestablish the feedback area
and/or generic mode with an OPEN.

■ Internally, QUKBLIB issues several I/O operations to verify that the library,
sublibrary, and member name and type exists. In the event of an error, the
operation code in the feedback area contains the last attempted I/O
operation. As an example, STATMBR would signify that a verification on
the member was attempted and failed.

Optional Material 6–101

QUKBLIB — VSE Library Interface (VSE Only)

■ Examples:

CALL QUKBLIB C’OPEN’ C’QJLIB ’ C’QJ150 ’
 C’AMORTIZE’ C’Q ’ C’SOURCE ’ FB-AREA

CALL QUKBLIB C’OPEN ’ LIB-NAME SUBLIB-NAME
 C’QUIK* ’ C’A ’ CHAIN-NAME FEEDBK-AREA

VAL 46-49 Return Codes:

Code Description

0000 Call was successfully completed. The service worked as requested.

0100 Missing or bad parameters passed. Check parameters to ensure that the
sequences are correct, or if proper spaces are required for certain
passing parameters.

0108 Library could not be found. Check parameters for valid library names,
sublibrary, or chain ID. Asterisks (*) are not permitted for these
parameters.

0112 Member could not be found. Check parameters for valid member name
and type, library names, sublibrary, or chain ID.

0116 Virtual storage could not be obtained. Check SIZE parameters on your
EXEC statement and increase the availability of your GETVIS area.

0120 Library could not be opened. Most likely, the member name and/or
member type could not be found. Check librarian feedback codes, as
well as parameters for valid member name and type, library names,
sublibrary, or chain ID.

If VAL46-49 is non-zero, check the feedback area return codes.

Retrieve a record
 CALL QUKBLIB C’GET’ RECORD-AREA
 MEMBER-NAME MEMBER-TYPE
 NEW-MEMNAME NEW-MEMTYPE

The record is retrieved and placed into the 80-byte record area. Upon reaching
the end of the current member, the next member name and type is placed into
the new member name and new member type fields, respectively, if an asterisk
has been specified in member-name and member-type (generic mode). If the end
of file (EOF) is reached, high values (X’FF’) are placed in the new member name
and new member type fields.

A new member name and/or member type can be requested by the user, even
before the current member reaches end of member.

6–102 VISION:Report Reference Guide

QUKBLIB — VSE Library Interface (VSE Only)

End of Member Processing

Upon reaching the end of the current member, the next member name and type
is placed into the new member name and new member type fields respectively,
if an asterisk has been specified in member-name and member-type (generic
mode). A return code of 0004 is placed in the VAL46-49 area, and the operation
code in the feedback area will contain ‘EOM/TYP’.

The last record is moved into the user’s record area. If the end of file (EOF) is
reached, high values (X’FF’) are placed in the new member name and new
member type fields, along with the last record being moved into the user’s
record area.

Upon reaching the end of the current member, or a GET command is requested
for another member (even before reaching end of member), QUKBLIB issues the
internal I/O commands necessary in an attempt to accommodate the request.
These I/O operations include the CLOSE and OPEN commands. If any errors
occur, examine the VAL46-49 return codes and the error message and return
codes for those commands.

VAL46-49 Return Codes:

Code Description

0000 Call was successfully completed. The service worked as requested.

0004 End of member. The record in the record-area is the last record for
this member and/or type. The operation code in the feedback area
should have ‘EOM/TYP”.

0008 End of File. The record in the record-area is the last record for this
library. Any further attempts to read the record will probably cause
an abend. The operation code in the feedback area should have EOF.

0100 Missing or bad parameters passed. Check parameters to ensure that
the sequences are correct or if proper spaces are required for certain
passing parameters.

0112 Member could not be found. Check parameters for valid member
name and type, library names, sublibrary, or chain ID.

0150 Length of record is not 80 bytes. Library format or type is invalid.

0154 Undeterminable error. Check feedback area and codes, as well as
parameters for valid member name and type.

If VAL46-49 is non-zero, check the feedback area return codes.

Optional Material 6–103

QUKBLIB — VSE Library Interface (VSE Only)

Closing a Library
 CALL QUKBLIB C’CLOSE’

Along with closing the library previously opened, this CALL frees buffer areas
and resets the feedback area pointers and generic mode settings. This CALL
should always be made before going to end of job (EOJ). If the library has not
been opened, this command is ignored.

VAL46-49 Return Codes:

Code Description

0000 Close was successfully completed.

0004 There was at least one additional parameter coded; this is not needed
and should be corrected, but the CLOSE was successfully completed.

If VAL46-49 contains other than the above codes, check the feedback area return
codes.

Miscellaneous Return Codes

VAL46-49 Return Codes:

Code Description

0200 The function or command requested is invalid or non-existent. Check
spelling.

0204 This error should not occur. The pointer to the feedback area is invalid
or contains zeros. Normally, after an OPEN, the feedback area has been
established. Contact Technical Support (see the section Contacting
Computer Associates in Chapter 1.)

0208 Library has not been opened. Function requested cannot be performed.

6–104 VISION:Report Reference Guide

TOTAL Interface (VSE Only)

TOTAL Interface (VSE Only)
VISION:Report access to TOTAL database files is accomplished by the CALL
verb, in a manner similar to COBOL. The following VISION:Report statements
are examples of such a call to TOTAL:

010 CALL QJDATBAS C'SINON' WST101 C'UPDATE' C'BASE01' C'END.'
150 CALL QJDATBAS C'READV' WST1 USER-PARMS etc etc C'END.'

QJDATBAS is a callable routine which can be renamed. Data areas and/or
literals can be used in combination in the parameter list to communicate
requests. The parameters specified in the QJDATBAS call list are the same as
other languages would use for calls to DATBAS (see the TOTAL Guide).

Two requirements must be met to use TOTAL database files successfully with
VISION:Report as shown above.

■ A callable subroutine in the phase library, which includes DATBAS (or
DATBAS7).

■ Reserved core immediately following DATBAS for the TOTAL package to
use for program and I/O buffers.

See the installation materials for additional information.

TOTAL4 Interface
VISION:Report access to TOTAL database files is accomplished by the CALL
verb, in a manner similar to COBOL. The following VISION:Report statements
are examples of such a call to TOTAL:

CALL QJTOTAL C'OPENM' WST101 C'MMMM' C'END.'
CALL QJTOTAL C'SEQRM' WST1 C'MMMM' C'MMMMCTRLMMMMDATA' WST100 C'END.'

QJTOTAL is a callable routine which can be renamed by you. Data areas and/or
literals can be used in combination in the parameter list to communicate
requests. The parameters specified in the QJTOTAL call list are the same as
other languages would use for calls to TOTAL (see the TOTAL Guide).

The following requirement must be met to successfully use TOTAL database
files with VISION:Report as shown above.

A callable subroutine in the phase library, which includes TOTAL4, the
appropriate database module, and direct access module.

Refer to the VISION:Report Installation Guide for additional information.

Optional Material 6–105

Chapter

7
QUIKVSAM

QUIKVSAM
QUIKVSAM provides you with native mode access to VSAM data sets (files),
enabling you to support commonly used VSAM functions with the minimum of
effort.

The QUIKVSAM subroutine is automatically installed as part of the
VISION:Report installation. In one execution of VISION:Report, QUIKVSAM
can access a total of 256 concurrently open files, plus the 53 files available
through standard VISION:Report. QUIKVSAM can also be called from
Assembler or COBOL language programs.

QUIKVSAM provides you with the capabilities to process keyed sequenced
(KSDS), entry sequenced (ESDS), and relative record (RRDS) data sets in either
a random or sequential mode. In addition, LDS, VRRDS (OS/390 only) and
VRDS (VSE only) files are supported. Records can be of a fixed, variable, or
spanned format. KSDS files can have an LRECL greater than 32K. Functional
commands (operands) are available to retrieve, update, insert, load, and delete
records. An extensive diagnostic/error display routine is included to assist you
in debugging illogical requests or determine the cause of abnormal conditions.

The user ABEND code 3998 is issued in the event an error occurs from which
QUIKVSAM cannot recover.

Note: Prior to Release 16.0, you could not mix native VSAM coding with calls to
QUIKVSAM.

Prerequisites
■ System generated with VSAM support.

■ VSAM and Access Method Services (AMS) modules in appropriate library.

■ A master and/or user catalog.

■ Any VSAM data set (cluster, path, alternate index) referenced by
QUIKVSAM must have previously been defined using AMS (IDCAMS).

QUIKVSAM 7–1

QUIKVSAM

■ Partition or region size large enough to accommodate VISION:Report and
VSAM routines (512K or larger).

Application

The CALL statement presents basic parameter information to QUIKVSAM. It is
the function of the VSAM subroutine to interpret the parameters and build and
issue the necessary I/O operations to satisfy the requested functions. Typically,
you have to specify the following:

■ The ddname (file name) of the data set to access. The length of the ddname
operand is system dependent (VSE—seven positions, MVS—eight
positions). Be sure to include any spaces necessary for padding to bring it to
the correct length.

■ Do not use CLOSE for DDname or filename.

■ What function is to be performed (such as, get a record, put a record, point,
update, erase).

■ The location of the logical record for the specified function.

■ The location of the key of the logical record for the specified function.

■ The optional parameters providing for type of record matches,
communications/feedback, passwords, and closing of data sets.

Function

Operand
One

Operand
Two

Operand
Three

Operand
Four

Operand
Five

Operand
Six

K
S
D
S

E
S
D
S

R
R
D
S

V
R
D
S

L
D
S

Retrieve/
Sequential

CALL
QUIKVSAM

C'ddname' C'GET' or
C'SEQNTL'

Rec-Area X X

X

Retrieve/
Random

CALL
QUIKVSAM

C'ddname' C'READ' or
 C'RANDOM'

Rec-Area Key-Area [C'KEQ'
C'KGE']

X X X X X

Retrieve for
Update
Sequential

CALL
QUIKVSAM

C'ddname' C'GET-UPD' Rec-Area X X X

Retrieve for
Update Random

CALL
QUIKVSAM

C'ddname' C'READ-UPD' Rec-Area Key-Area [C'KEQ'
C'KGE']

X X X X X

Update/Change
(Sequential
or Random)

CALL
QUIKVSAM

C'ddname' C'UPDATE' Rec-Area X X X X X

Load/Insert
Sequential

CALL
QUIKVSAM

C'ddname' C'LOAD' Rec-Area X X X

Add/Insert
Random

CALL
QUIKVSAM

C'ddname' C'ADD' Rec-Area X

7–2 VISION:Report Reference Guide

QUIKVSAM

Function

Operand
One

Operand
Two

Operand
Three

Operand
Four

Operand
Five

Operand
Six

K
S
D
S

E
S
D
S

R
R
D
S

V
R
D
S

L
D
S

Point Generic
Position

CALL
QUIKVSAM

C'ddname' C'POINT'
C'PNT'

Key-Area [C'KGEnn'
C'KEQ']

 X X X X X

Erase (Seq. &
Ran.)

CALL
QUIKVSAM

C'ddname' C'ERASE' X X X

Communication/
Feedback Area

CALL
QUIKVSAM

C'ddname' C'OPTION'
C'OPT-RESET'

Opt-Area
Opt-Area

[C'password']

[C'password']

 X X X X X

Open CALL
QUIKVSAM

C'ddname' C'OPEN' Opt-Area [C'password']

X X X X X

Close CALL
QUIKVSAM

C'ddname' C'CLOSE' X X X X X

Close All
Data Sets

CALL
QUIKVSAM

C'CLOSE' X X X X X

Temporary
Close

CALL
QUIKVSAM

C'ddname' C'TCLOSE' X X X X X

Temporary
Close New
File

CALL
QUIKVSAM

C'ddname' C'CLOSER' X

Retrieve/
Sequential

CALL
QUIKVSAM

C'ddname' C'RRGET' Rec-Area Key-Area X X

Retrieve for
Update
Sequential

CALL
QUIKVSAM

C'ddname' C'RRGET-
UPD'

Rec-Area Key-Area X X

Load/Insert
Sequential

CALL
QUIKVSAM

C'ddname' C'RRLOAD' Rec-Area Key-Area X X

Add/Insert
Random

CALL
QUIKVSAM

C'ddname' C'RRADD' Rec-Area Key-Area X X

Legend:
[] = Optional Parameter ddname = ddname or file name
Opt-Area = Optional Feedback Area Key-Area = Key Search Argument Area
Rec-Area = Record Return Area

QUIKVSAM 7–3

QUIKVSAM Communication/Feedback Area Contents

QUIKVSAM Communication/Feedback Area Contents

Position Definition Possible Value to Expect Format

1 File Type K = KSDS
E = ESDS
R = RRDS

EBCDIC

2 Type Access C = Base Cluster
P = Path
X = Alternate Index

EBCDIC

3 Reserved Not Used

4-7 Record Length Length of last record retrieved or length
of record to be added or updated

Binary

8 VSAM Return
Code (RC)

Severity of error

X'00' = Successful operation

X'04' = Warning, possible error

X'08' = Failure, logical error; also end-of-
file or no-record-found

X'0C' = Failure, physical I/O error

X'0F' = QUIKVSAM detected illegal call;
see error message on diagnostic
printout

Binary

9 VSAM Error
Code (EC)

X'00' = Successful operation

X'04' = End-of-file detected

X'08' = Duplicate record

X'0C' = Record out of sequence

X'10' = No-record-found

Any Other = Causes QUIKVSAM to
ABEND with diagnostic
routine

Binary

10-13 Relative Byte
Address (RBA)

RBA of the last record retrieved, added,
or updated

Binary

Or

10-17

Extended
Relative Byte
Address
(XRBA)

XRBA of the last record retrieved,
added, or updated

Binary

7–4 VISION:Report Reference Guide

QUIKVSAM Description

QUIKVSAM Description
The VSAM subroutine examines the parameters presented to it on each CALL
request. The degree of examination is limited to checking for too many/too few
operands for the action requested.

It is your responsibility to assure the validity of information such as, data
integrity, adequate space for records, valid record lengths, inclusion of keys
where required. Any violation detected by VSAM results in an aborted
operation and the appropriate RC/EC (return/error codes).

The following notes are applicable to QUIKVSAM usage:

■ When any UPDATE, ADD, or LOAD function occurs on a data set, an
OPTION or OPT-RESET request is required. This request must be the first
CALL request made to the data set. The use of the OPTION request
automatically opens the VSAM file in UPDATE mode. OPT-RESET will
additionally reset the most frequently used RBA or XRBA to zero if the data
set has been defined with the REUSE parameter. This is required for
communicating the record length in the feedback area and allows for
possible output processing. The number and size of VSAM buffers used are
the same as those specified in the JCL or catalog, or the default taken by
VSAM.

■ When doing retrieval, an area must be available for the length of the
maximum record size. Maximum record size is the one defined in the
VSAM catalog. Any records not of maximum record size will have the
remaining portion of the area blanked.

■ When doing retrieval, the record return area contains high values (X'FF')
when end of data is reached or on a no-record-found condition. If the
options feedback area is used, these condition codes are also present in the
RC/EC fields.

KSDS

Record sizes in a KSDS can be changed in the update function. The key of the
record cannot be changed. Records must adhere to specifications as they are
defined in the catalog.

A record can be deleted (erased). The only requirement is that it must have been
retrieved for update (random or sequential) immediately prior to the ERASE
function.

QUIKVSAM 7–5

QUIKVSAM Description

ESDS

Any direct/random access requires a key as noted in the CALL formats. The
key is the RBA (relative byte address) of the record. It is always specified in a
four-byte binary format. The RBA of retrieved records is available in positions
10-13 of the feedback area.

Records added to an ESDS file must be done in sequential (LOAD) mode. Each
record is written in the next available entry position. ESDS record sizes cannot
be changed once they have been added to the file.

Deleting (erasing) records in an ESDS file is not allowed.

RRDS

Relative record usage has a unique key that requires special handling. The key is
the relative record occurrence (or slot number); however, it is not required to be
contained in the data record itself. So the QUIKVSAM subroutine has been
designed to use RRDS with a required operand for key location.

When doing random mode processing with RRDS files, you must supply the
key for the record wanted. When doing sequential mode processing with RRDS
files, the key of the record is supplied to the user in the key area after the
operation is completed. The key or relative record number in all cases is in a 4-
byte binary format.

7–6 VISION:Report Reference Guide

QUIKVSAM Level of Support

QUIKVSAM Level of Support

QUIKVSAM Level of
Support

KSDS
(Keyed)

ESDS
(Entry)

RRDS
(Relative Record)

Processing Mode Random/
Sequential

Random/
Sequential

Random/
Sequential

Type of access Key Address (RBA)
or XRBA

Key
(Relative Record #)

Alternate indexes Yes Yes Not allowed

KEQ/KGE search
option (key equal, key
greater or equal

Yes Yes Yes

Backward processing No No No

Reset at open to null
file (to use as a work
file)

Yes Yes Yes

Key length User defined 4-Bytes Binary
(RBA)

4-Bytes Binary
(Relative Record #)

VSAM return code Position 8 of
feedback area

Position 8 of
feedback area

Position 8 of
feedback area

VSAM error Position 9 of
feedback area

Position 9 of
feedback area

Position 9 of
feedback area

RBA (Relative Byte
Address)

Positions 10-13
of feedback
area

Positions 10-13
of feedback
area

Positions 10-13 of
feedback area

XRBA (Extended
Relative Byte Address)

Note: Supported only
by OS/390

Positions 10-17
of feedback
area

Positions 10-13
of feedback
area

Positions 10-13 of
feedback area

Record length Positions 4-7 of
feedback area

Positions 4-7 of
feedback area

Positions 4-7 of
feedback area

QUIKVSAM 7–7

VSAM Function/Option

VSAM Function/Option

VSAM Function/Option

QUIKVSAM
Command
Name (KSDS)

QUIKVSAM
Command
Name (ESDS)

QUIKVSAM
Command
Name (RRDS)

Sequential GET GET RRGET Simple Record
Retrieval

Random READ READ READ

Sequential GET-UPD GET-UPD RRGET-UPD Update Record
Retrieval

Random READ-UPD READ-UPD READ-UPD

Create/Insert
Sequential

LOAD LOAD RRLOAD Add Records

Add/Insert
Random

ADD Not allowed RRADD

Update
Records

Random and
Sequential

UPDATE UPDATE UPDATE
Cannot change record length.
This is a VSAM restriction on
ESDS and RRDS data sets.

Delete Records Random and
Sequential

ERASE Not allowed ERASE

Positioning Generic Point POINT POINT POINT

Feedback
Area

OPTION/
OPT-RESET

OPTION/
OPT-RESET

OPTION/
OPT-RESET

Data Set Close CLOSE CLOSE CLOSE

Data Set Close
and Reopen

CLOSER Not
applicable

Not applicable

Housekeeping

Data Set
Temporary
Close

TCLOSE TCLOSE TCLOSE

7–8 VISION:Report Reference Guide

VSAM Share Options

VSAM Share Options
This section contains information on VSAM share options which is essential if
you need to reference a data set with more than one ddname or have multiple
partition/region considerations.

Definition: The level of sharing allowed for accessing a VSAM data set
from multiple requests in other input and/or output processing modes.

Term Description

SHAREOPTION 1 Any number of programs (TASKS, ACBs) could have
access for input processing or only one program (TASK,
ACB) can have access for output processing.

SHAREOPTION 2 Any number of programs (TASKS ACBs) could have
access for input processing, and at the same time one
program (TASK, ACB) can have access for output
processing.

SHAREOPTION
3 & 4

Any number of programs (TASKS, ACBs) could have
access to data set for both input and output processing.
Note that data integrity is not ensured.

When Shareoption 1 or 2 is in effect for the data set in question, the following
discussion is applicable. These considerations are given due to the fact that
QUIKVSAM usage can involve multiple ddnames and/or alternate indexes
referring to the same data set.

The same conditions would also apply when a data set has been opened by a TP
network in a partition/region and QUIKVSAM is to access the same data set
from a batch partition/region.

Item Description

Fact QUIKVSAM opens each ddname (ACB) for possible output
processing on the condition the first CALL request is OPTION.
Otherwise, it is opened for input processing only. You must use the
OPTION CALL command for feedback communication whenever
any ADD/UPDATE/ ERASE function is performed. You can use
the OPT-RESET request if you want to load a VSAM file with the
REUSE characteristics.

QUIKVSAM 7–9

Functions

Item Description

Consider To retrieve from a data set with multiple ddnames:

Solution 1 Do not use OPTION in a call command.

Solution 2 Do a serve-no-purpose POINT or GET as the first call to
QUIKVSAM then issue a CALL with OPTION
command if feedback information is wanted.

Example

You have an employee master file you want to read sequentially from front to
back. While doing so, you also want to read another record in random sequence
from the same data set.

Solution with no OPTION feedback area:

CALL QUIKVSAM C'ddname1 ' C'GET' WST1
CALL QUIKVSAM C'ddname2 ' C'READ' WST201 WST2

Solution with OPTION feedback area:

CALL QUIKVSAM C'ddname1 ' C'OPTION' WST1
CALL QUIKVSAM C'ddname2 ' C'OPTION' WST21
CALL QUIKVSAM C'ddname1 ' C'POINT' WST1
CALL QUIKVSAM C'ddname2 ' C'POINT' WST1
CALL QUIKVSAM C'ddname1 ' C'GET' WST101
CALL QUIKVSAM C'ddname2 ' C'READ' WST301 WST102

No adding/updating is allowed in this situation.

Functions
Examples and definitions of QUIKVSAM functions follow. The required and
optional operands are defined. Optional operands are given in [brackets].

Add/Insert Sequential (KSDS)

ADD Command

Write randomly keyed logical records to the data set specified by ddname, the
data located in the area designated by rec-area. The function inserts records into
KSDS data sets based upon the unique key found in the record.

Record length must be specified in relative positions 4-7 (binary) of the options
feedback area.

7–10 VISION:Report Reference Guide

Functions

STMT OP2 OP3 OP4

CALL QUIKVSAM C'ddname' C'ADD' rec-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use ddname of CLOSE.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'ADD' in literal format.

- VISION:Report area containing ADD.

■ A VISION:Report area containing the record to be inserted into the data set
by QUIKVSAM.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

Duplicate record= RC/EC = X'0808'

Close Data Set (KSDS, ESDS, RRDS)

CLOSE Command

The CLOSE function causes QUIKVSAM to close a particular data set specified
by ddname or to close all currently open VSAM data sets.

STMT OP2 OP3

(A) CALL QUIKVSAM C'ddname' C'CLOSE'
(B) CALL QUIKVSAM C'CLOSE'

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ For CALL format (A), the ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use a ddname of CLOSE.

- VISION:Report area containing the ddname.

QUIKVSAM 7–11

Functions

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ For CALL format (B), the function/command can be one of the following:

- C'CLOSE' in literal format.

- VISION:Report area containing CLOSE.

■ For CALL format (A), the function/command can be one of the following:

- C'CLOSE' in literal format.

- VISION:Report area containing CLOSE.

With intervening CLOSE requests the same data set (ddname) can be
accessed unlimited number of times in the same run.

Also, by using the CLOSE command, unlimited number of data sets
(ddnames) can be accessed, up to a maximum of eight for MVS, five for
VSE, at any one time.

Close and Reopen Data Set (KSDS)

CLOSER Command

After loading a KSDS file, in order to reprocess it, the file must be closed. This
VSAM requirement is for creating the index portion of the cluster and any
alternate indexes associated with it. Then the file must be opened for
subsequent processing. The CLOSER command accomplishes this in an efficient
manner without releasing control blocks and regenerating them.

STMT OP2 OP3

CALL QUIKVSAM C'ddname' C'CLOSER'

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the ddname of CLOSE.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'CLOSER' in literal format.

7–12 VISION:Report Reference Guide

Functions

- VISION:Report area containing CLOSER.

 With intervening CLOSER requests the same data set (ddname) can be
accessed an unlimited number of times in the same run.

Erase Random and Sequential (KSDS,RRDS)

ERASE Command

This command erases the logical record most recently retrieved for update from
the data set specified by ddname. The ERASE function deletes the logical record
in the same mode in which it was retrieved (that is, sequential or random).

STMT OP2 OP3

CALL QUIKVSAM C'ddname' C'ERASE'

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'ERASE' in literal format.

- VISION:Report area containing ERASE.

The record location is not needed on an ERASE command. VSAM saves the
identity of the record most recently retrieved for update (from this same
data set), and this will be the record that is deleted.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

QUIKVSAM 7–13

Functions

Retrieve Sequential (KSDS,ESDS)

GET or SEQNTL Command

Retrieve the next sequential (or first) logical record from the data set specified
by ddname into the area designated by rec-area.

STMT OP2 OP3 OP4

CALL QUIKVSAM C'ddname' C'GET' rec-area
 or
 C'SEQNTL'

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'GET' in literal format. Do not use the CLOSE ddname.

- C'SEQNTL' in literal format.

- VISION:Report area containing GET or SEQNTL.

■ Record return area where QUIKVSAM places the retrieved record.

This area contains high values when end of file is reached (RC/EC=X'0804').
The length of this area must be at least equal to the maximum record size as
defined in the catalog for the data set specified. Sequential retrieval
commences at the beginning of the file unless other requests for the same
ddname have already occurred. After a successful point call is made, the
record matching either the KEQ or KGE attributes is returned on a GET
request.

7–14 VISION:Report Reference Guide

Functions

Retrieve Sequential for Update (KSDS, ESDS)

GET-UPD Command

Retrieve for possible updating the next sequential (or first) logical record from
the data set specified by ddname into the area designated by rec-area.

STMT OP2 OP3 OP4

CALL QUIKVSAM C'ddname' C'GET-UPD' rec-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'GET-UPD' in literal format.

- VISION:Report area containing GET-UPD.

■ Record return area where QUIKVSAM places the retrieved record. This area
contains high values when end of file is reached (RC/EC = X'0804'). The
length of this area must be at least equal to the maximum record size as
defined in the catalog for the data set specified.

A call to QUIKVSAM using OPTION must precede the first use of this
command. The record retrieved with this command can be updated or
erased on a KSDS file; whereas on an ESDS file, a retrieved record can only
be updated.

Sequential retrieval commences at the beginning of the file unless other
requests for the same ddname have already occurred. After a successful
point call is made, the record matching either the KEQ or KGE attributes is
returned on a GET-UPD request.

QUIKVSAM 7–15

Functions

Load/Insert Sequential (KSDS, ESDS)

LOAD Command

Write sequentially to the data set specified by ddname the logical record located
in the area designated by rec-area.

In addition to the data set load/create capability, this function also inserts
records (in key sequence) to an already existing KSDS data set or adds records
at the logical end of an ESDS data set. Record length must be specified in
relative positions 4-7 (binary) of the options feedback area.

STMT OP2 OP3 OP4

CALL QUIKVSAM C'ddname' C'LOAD' rec-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'LOAD' in literal format.

- VISION:Report area containing LOAD.

■ A VISION:Report area containing the record to be inserted into the data set
by QUIKVSAM.

A call to QUIKVSAM using OPTION must precede the first use of this
command. As indicated above, record length must be specified in positions
4-7 of the feedback area.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

Duplicate record: RC/EC = X'0808'

Record out of sequence: RC/EC = X'080C'

7–16 VISION:Report Reference Guide

Functions

Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPEN

OPEN Command

The OPEN function allows you to designate an opt-area where the feedback
value and return codes are placed for the data set specified by ddname. The
password for the data set can also be specified.

This function communicates to QUIKVSAM that feedback data is wanted and
where to place it for all subsequent calls made involving the data set specified
by ddname. This command is read only and does not allow add/update/erase
functions.

STMT OP2 OP3 OP4 OP5
CALL QUIKVSAM C'ddname' C'OPEN' opt-area [C'password']

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'OPEN' in literal format.

- VISION:Report area containing OPEN.

■ A VISION:Report area where feedback values and return codes are placed
after each call to QUIKVSAM for this same data set. The length of the
option feedback area is 13 or 17 bytes depending on RBA or XRBA. See
QUIKVSAM feedback area contents.

■ Optional. This operand communicates to QUIKVSAM the password to be
supplied when opening the VSAM data set specified in operand 2 as
ddname. If a password is entered, it must be eight positions in length,
padded with spaces, if necessary. This operand can be specified by one of
the following methods: field definition, character literal, or hexadecimal
literal.

This operand is optional and is not required for data sets without password
protection.

Any data (such as record length) that you want to place in the feedback area
must be placed after an OPEN CALL request is made.

QUIKVSAM 7–17

Functions

Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPTION and
OPT-RESET

OPTION and OPT-RESET Command

The OPTION and OPT-RESET functions allow you to designate an opt-area
where feedback values and return codes are placed for the data set specified by
ddname. The password for the data set can also be specified. The OPTION
function opens the VSAM file in update mode. The OPT-RESET function opens
the VSAM file in load mode. OPT-RESET can be used when the VSAM file has
the REUSE characteristics.

These two functions communicate to QUIKVSAM that feedback data is wanted
and where to place it for all subsequent calls made involving the data set
specified by ddname. An options feedback area is required by QUIKVSAM
when functions requested are ADD/UPDATE/ERASE or LOAD if the function
is OPT-RESET.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' C'OPTION' opt-area [C'password']

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'OPTION' in literal format.

- C'OPT-RESET' in literal format.

- VISION:Report area containing OPTION or OPT-RESET.

■ A VISION:Report area where feedback values and return codes are placed
after each call to QUIKVSAM for this same data set. The length of the
option feedback area is 13 or 17 bytes depending on RBA or XRBA. See
QUIKVSAM feedback area contents.

7–18 VISION:Report Reference Guide

Functions

■ Optional. This operand communicates to QUIKVSAM the password to be
supplied when opening the VSAM data set specified in operand 2 as
ddname. If a password is entered, it must be eight positions in length,
padded with spaces, if necessary. This operand can be specified by one of
the following methods: field definition, character literal, or hexadecimal
literal.

This operand is optional and is not required for data sets without password
protection.

Any data (such as record length) that you want to place in the feedback area
must be placed after an OPTION or OPT-RESET CALL request is made.

Point/Generic Position (KSDS, ESDS, RRDS)

POINT or PNT Command

Position the data set specified by ddname to begin subsequent sequential
retrieval at the logical record whose generic (or full) key value is located in key-
area.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' C'POINT' key-area [C'KGEnn'
 or or
 C'PNT' C'KEQ']

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use ddname of CLOSE.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'POINT' in literal format.

- C'PNT' in literal format.

- VISION:Report area containing POINT or PNT.

■ A VISION:Report area where the key of the record that is to be positioned
is located. It must be the length of full key for KEQ (key equal) POINT. It
could be partial key length if the generic POINT option KGE (key greater or
equal) is used (KSDS only).

QUIKVSAM 7–19

Functions

To POINT to an ESDS or RRDS data set, the key must be specified in a four-
byte binary format. The key of an ESDS record is its RBA (relative byte
address), whereas an RRDS key is the relative record number.

No partial key or generic point is allowed with ESDS and RRDS data set
records.

■ Optional. This operand determines the type of point wanted by the user,
and it can be one of the following:

- C'KEQ' to point at a record with a key equal.

- C'KGEnn' to point at a generic record with a key greater or equal.

The nn on KGE represents the partial key length to be used in the point
and must be two digits in the range of 01-99.

- A VISION:Report area containing one of the above.

This operand is optional with the default being KGE using the full key
length.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each POINT operation.

Making a request for sequential retrieval following a point failure
causes an abnormal termination.

No record found: RC/EC = X'0810'

7–20 VISION:Report Reference Guide

Functions

Retrieve Random (KSDS, ESDS, RRDS)

READ or RANDOM Command

Randomly retrieve from the data set specified by ddname a logical record
matching the key-area and return into the area designated by rec-area.

STMT OP2 OP3 OP4 OP5 OP6

CALL QUIKVSAM C'ddname' C'READ' rec-area key-area [C'KEQ'
 or or
 C'RANDOM' C'KGE']

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'READ' in literal format.

- C'RANDOM' in literal format.

- VISION:Report area containing READ or RANDOM.

■ Record return area where QUIKVSAM places the retrieved record. This area
contains high values on a no-record-found condition (RC/EC=X'0810'). The
length of this area must be at least equal to the maximum record size as
defined in the catalog for the data set specified.

■ An area where the key of the record to be retrieved is located. The length of
this area for KSDS data sets is equal to the key length padded with fill
characters to the right, if necessary.

To randomly retrieve records from ESDS or RRDS data sets, the key must
be specified in a 4-byte binary format. The key of an ESDS record is its RBA
(relative byte address), whereas an RRDS key is the relative record number
of the record wanted.

■ Optional. This operand determines the type of match between the key
wanted and the data set and can be one of the following:

- C'KEQ' if equal key comparison wanted.

- C'KGE' if a greater or equal comparison wanted.

- VISION:Report area containing KEQ or KGE.

QUIKVSAM 7–21

Functions

This operand is optional with the default being KEQ when not specified.
ESDS and RRDS key search matches must use KEQ.

Retrieve Random for Update (KSDS, ESDS, RRDS)

Command: READ-UPD

Randomly retrieve for possible updating from the data set specified by ddname
a logical record matching the key-area and return into the area designated by
rec-area.

STMT OP2 OP3 OP4 OP5 OP6

CALL QUIKVSAM C'ddname' C'READ-UPD' rec-area key-area [C'KEQ'
 or
 C'KGE']

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

 The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included
for padding.

■ The function/command can be one of the following:

- C'READ-UPD' in literal format.

- VISION:Report area containing READ-UPD.

■ Record return area where QUIKVSAM places the retrieved record. This area
contains high values on a no-record-found condition (RC/EC = X'0810'). The
length of this area must be equal to or greater than the maximum record
size as defined in the catalog for the data set specified.

■ Location at which the key of each record retrieved is placed. The length of
this area for KSDS data sets is equal to the key length padded with fill
characters to the right, if necessary.

To randomly retrieve records from ESDS or RRDS data sets, the key must
be specified in a 4-byte binary format. The key of an ESDS record is its RBA
(relative byte address), whereas an RRDS key is the relative record number
of the record wanted.

■ Optional. This operand determines the type of match between the key
wanted and the data set and can be one of the following:

7–22 VISION:Report Reference Guide

Functions

- C'KEQ' if equal key comparison wanted.

- C'KGE' if a greater or equal comparison wanted.

- VISION:Report area containing KEQ or KGE.

Note: A call to QUIKVSAM using OPTION must precede the first use of
this command.

This operand is optional with the default being KEQ when not specified.
ESDS and RRDS key search matches must use KEQ.

The record retrieved with this command can be updated or erased on an
ESDS or RRDS data set. On an ESDS data set, a record can only be updated.
On a KSDS record, its length can be changed.

Add/Insert Random (RRDS)

RRADD Command

Write randomly relative-keyed logical records to the data set specified by
ddname the contents located in the area designated by rec-area.

The key (relative record number) of the record must be placed in the key-area
location. The function inserts records into RRDS data sets based upon the
unique key of the record. Record length must be specified in relative positions 4-
7 (binary) of the options feedback area.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' C'RRADD' rec-area key-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use ddname of CLOSE.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'RRADD' in literal format.

- VISION:Report area containing RADD.

■ A VISION:Report area containing the record to be inserted in the data set by
QUIKVSAM.

QUIKVSAM 7–23

Functions

■ Area where the key (relative record number) of the record to be inserted is
located. The key of an RRDS record is in a 4-byte binary format.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

Duplicate record= RC/EC = X'0808'

Retrieve Sequential (RRDS)

RRGET Command

Retrieve the next sequential (or first) logical record from the data set specified
by ddname into the area designated by rec-area. The key (relative record
number) of the retrieved record is placed into key-area location.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' C'RRGET' rec-area key-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'RRGET' in literal format.

- VISION:Report area containing RRGET.

■ Record return area where QUIKVSAM places the retrieved record. This area
contains high values when end of file is reached (RC/EC = X'0804').

■ Location at which the key of each record retrieved is placed. The key is
returned to this area which is in a 4-byte binary format.

Sequential retrieval commences at the beginning of the file unless other
requests for the same ddname have already occurred.

After a successful point call is made, the record matching either the KEQ or
KGE attributes are returned on a RRGET request.

7–24 VISION:Report Reference Guide

Functions

Retrieve Sequential for Update (RRDS)

RRGET-UPD Command

Retrieve for possible update the next sequential (or first) logical record from the
data set specified by ddname into the area designated by rec-area. The key
(relative record number) of the retrieved record is placed into key-area location.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' 'RRGET-UPD' rec-area key-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'RRGET-UPD' in literal format.

- VISION:Report area containing RRGET-UPD.

■ Record return area where QUIKVSAM places the retrieved record. This area
contains high values when end of file is reached (RC/EC = X'0804').

■ Location at which the key of each retrieved record is placed. The key is
returned to this area which is in a 4-byte binary format.

The record retrieved with this command can be updated or erased.

Sequential retrieval commences at the beginning of the file unless other
requests for the same ddname have already occurred.

After a successful point call is made, the record matching either the KEQ or
KGE attributes is returned on a RRGET-UPD request.

QUIKVSAM 7–25

Functions

Load/Insert Sequential (RRDS)

RRLOAD Command

Note: A call to QUIKVSAM using OPTION must precede the first use of this
command.

Write sequentially to the data set specified by ddname the logical record located
in the area designated by rec-area.

The record will be written into the next available slot, and the key of that slot
(relative record number) will be returned to the key-area location.

STMT OP2 OP3 OP4 OP5

CALL QUIKVSAM C'ddname' C'RRLOAD' rec-area key-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

Note: A call to QUIKVSAM using OPTION must precede the first use of
this command.

The length of the ddname Operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'RRLOAD' in literal format.

- VISION:Report area containing RRLOAD.

■ A VISION:Report area containing the record to be inserted into the data set
by QUIKVSAM.

■ Location where the key of each record written is placed. The key is returned
to this area which is in a 4-byte binary format.

The record length must be placed into positions 4-7 of the feedback area in
binary format.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

7–26 VISION:Report Reference Guide

Functions

Temporary Close (KSDS, ESDS, RRDS)

TCLOSE Command

A file can be closed temporarily and it will not be disconnected from processing;
you can continue processing without opening the file (to do so is an error). The
last block (control interval) accessed is written to the data set and, where
applicable, index, alternate index update can occur (in essence, flushes VSAM
buffers). You are responsible for positioning the file after TCLOSE and
subsequent processing. An example of this is not repositioning after reaching
EOF and executing the TCLOSE command.

STMT OP2 OP3

CALL QUIKVSAM C'ddname' C'TCLOSE'

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven positions,
MVS—eight positions) with the necessary spaces included for padding.

■ The function/command can be one of the following:

- C'TCLOSE' in literal format.

- VISION:Report area containing TCLOSE.

TCLOSE requests can access the same data set (ddname) an unlimited number
of times in the same run.

QUIKVSAM 7–27

Functions

Update/Change Random or Sequential (KSDS, ESDS, RRDS)

Command: UPDATE

Rewrite the logical record to the data set specified by ddname from the area
designated by rec-area. The record must have been the most recent one
retrieved for update from the same data set. Record lengths must be specified in
relative positions 4-7 (binary) of the options feedback area. The update function
will write the record to the data set in the same mode as it was retrieved (that is,
sequential or random).

STMT OP2 OP3 OP4

CALL QUIKVSAM C'ddname' C'UPDATE' rec-area

Operands

■ QUIKVSAM: Name of the VSAM subroutine.

■ The ddname/file name can be one of the following:

- C'ddname' in literal format. Do not use the CLOSE ddname.

- VISION:Report area containing the ddname.

The length of the ddname operand is system dependent (VSE—seven
positions, MVS—eight positions) with the necessary spaces included for
padding.

■ The function/command can be one of the following:

- C'UPDATE' in literal format.

- VISION:Report area containing UPDATE.

■ A VISION:Report area containing the record to be written to the data set by
QUIKVSAM. If a record’s length will not change, the correct length is
already present in the feedback positions 4-7 from the retrieve for update.
The length of a record can never exceed the maximum record size as
defined in the catalog for the data set specified. VSAM does not allow
changing the length of a record in an ESDS data set, and the records are
always of a fixed length on a RRDS data set. You cannot change the key
portion in the record of a KSDS data set.

The options feedback area should be used and the return/error codes
(positions 8-9 of feedback area) should be checked for success or failure
after each call to QUIKVSAM.

7–28 VISION:Report Reference Guide

Examples

Examples
This section shows examples using QUIKVSAM. The JCL for VSE and MVS is
included with each example. VISION:Report statements are presented to
demonstrate the use of QUIKVSAM. The appropriate load libraries or phase
libraries are assumed to be included and are not shown. Even though AMS
statements are MVS, most of the statements are applicable to VSE. It is assumed
that VSE I/O statements, if required, will be added to the VISION:Report
statements.

Example 1 — Define (using AMS) and Load a Variable Length Record VSAM Data
Set

This example consists of two steps:

1 Define the VSAM data set into the catalog using Access Method Services.

2 Load the same data set using VISION:Report/QUIKVSAM.

This example applies to KSDS and ESDS data sets (without keys) with variable
length records.

AMS Statements
DEFINE CLUSTER (NAME (VSAM.CLUSTER) VOL (VOLSER)-
 FILE (DATASET) RECSZ (80,300) KEY (4,5)-
 CYL (10,1) FREESPACE (20,5))
/*

VISION:Report Statements
010 CALL QUIKVSAM C'DATASET ' C'OPTION' WST1 /* Setup feedback.
050 ATEND 300 /* At EOF, GOTO 300.
100 GET /* Get a record.
110 MOVE INF1-2-B TO WST21-25-P /* MOVE rl to WST.
120 SUB C'4' FR WST21-25-P /* Subtract RDW Length
130 MOVE WST21-25-P TO WST4-7-B /* MOVE to feedback rec. len.
150 CALL QUIKVSAM C'DATASET' C'LOAD' INF5 /* Put a record.
160 IF WST8-9 IS LOVALUE /* Check RC/EC.
170 GOTO 100. /* Zeroes, GOTO GET.
200 PRINTHEX INF1 INF1-2 /* Prt hex input record
210 PRINTHEX WST1-13 /* Prt hex VSAM feedback area
300 CALL QUIKVSAM C'CLOSE' /* Request CLOSE.
310 GOTO EOJ /* EOJ.
400 END
/*

If this example’s AMS statements included the REUSE option, statement 010
could specify C'OPT-RESET' rather than C'OPTION'.

QUIKVSAM 7–29

Examples

VSE JCL Example
// JOB SAMPLE1 LOAD VAR-LEN RECORD FILE
// ASSGN SYS010,251 ASSIGN DISK OUTPUT
// DLBL DATASET,'VSAM.CLUSTER',,VSAM
// EXTENT SYS010,VOLSER
// ASSGN SYS011,180 ASSIGN TAPE INPUT
// TLBL INF,'VSAM.BACKUP'
// EXEC IDCAMS,SIZE=AUTO
. . . AMS STATEMENTS
// EXEC QUKBJOB
INFTAPV50000304SSYS011
. . . .VISION:REPORT statements

MVS JCL Example
//SAMPLE1 JOB (800-0000,000),RK LOAD VAR-LEN RECORD DATA SET
//S1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//DATASET DD DISP=OLD,UNIT=3380,DSN=VSAM.CLUSTER
//SYSIN DD *
. . .AMS STATEMENTS
//S2 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//DATASET DD DSN=VSAM.CLUSTER,DISP=OLD
//SYSUT1 DD DSN=VSAM.BACKUP,DISP=OLD,UNIT=TAPE
//SYSIN DD *
. . . VISION:REPORT statements

Example 2 — Copy a VSAM Data Set to Tape

The example shown below illustrates how to copy a VSAM data set to tape in
variable length format. This example could apply to KSDS and ESDS data sets
with fixed, variable, or spanned length records.

010 CALL QUIKVSAM C'DATASET ' C'OPTION' WST1 /* Setup feedback.
020 CALL QUIKVSAM C'DATASET ' C'GET' OFA5 /* Get a record.
050 IF OFA5-8 IS HIVALUE /* Test EOF.
060 GOTO 950.
070 IF WST8-9 IS NOT LOVALUE /* Test RC/EC.
080 GOTO 930.
100 MOVE LOVALUE TO OFA1-4 /* Zero rlxx OFA1-4.
110 MOVE WST6-7-B TO WST21-25-P /* MOVE rl to WST.
120 ADD C'4' TO WST21-25-P /* Add 4 to rl.
130 MOVE WST21-25-P TO OFA1-2-B /* MOVE rl into OFA1-2.
150 WRITE OFA /* Put a record.
160 GOTO 020 /* Go do it again.
930 PRINTHEX WST1-13 /* Prt hex (variable) areas
940 PRINTHEX OFA1 WST6-7 /* On abnormal RC/EC.
950 CALL QUIKVSAM C'CLOSE' /* CLOSE.
960 GOTO EOJ /* Force EOJ.
990 END
/*

Line 010 above opens VSAM file in update mode, although it is not required for
this example.

7–30 VISION:Report Reference Guide

Examples

VSE JCL Example
// JOB SAMPLE2 COPY VSAM VAR-LEN TO TAPE
// ASSGN SYS010,251 ASSIGN INPUT IF REQUIRED
// DLBL IJSYSUC,'VSAM.UCAT',,VSAM USER CATALOG (OPTIONAL)
// EXTENT SYS010,VOLSER
// DLBL DATASET,'VSAM.CLUSTER',,VSAM
// EXTENT SYS010,VOLSER
// ASSGN SYS011,180 ASSIGN OUTPUT IF REQUIRED
// TLBL OFA,'VSAM.BACKUP'
// EXEC QUKBJOB
OFATAPV50000304SSYS011

MVS JCL Example
//SAMPLE2 JOB (800-0000,000),RK COPY VSAM VAR-LEN TO TAPE
//S2 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//DATASET DD DSN=VSAM.CLUSTER,DISP=OLD
//SYSUT2 DD DSN=VSAM.BACKUP,DISP=(NEW,KEEP),UNIT=TAPE,
// VOL=SER=VOLSER,DCB=(RECFM=VB,LRECL=304,BLKSIZE=5000)
//SYSIN DD *

Example 3 — Load VSAM Data Set with Fixed Length Records

This example loads records of a fixed length (100 bytes) into the VSAM data set
with the ddname=DATSET1 and file-id or data set name of
DATASET.MASTER.

A count of the number of records loaded is recorded by the ACCUM statement
on line 060 and will be printed at EOJ.

EQU OPT-AREA WST1
EQU REC-AREA INF1
EQU RC-EC WST8-9
005 HDR 1A 1 $IPLDAT$ QUIKVSAM DATA SET LOAD/CREATE
010 CALL QUIKVSAM C'DATSET1 ' C'OPTION' OPT-AREA /* Setup fdbk area.
020 MOVE C'100' TO WST4-7-B /* MOVE 100 to fdbk for rec len.
040 ATEND 200 /* At EOF goto EOJ processing.
050 GET /* GET a record.
060 ACCUM ONE IN A 5 BYTE CTA, ON BREAKS PRINT IN POS 001 0C /* Add 1.
070 CALL QUIKVSAM C'DATSET1 ' C'LOAD' REC-AREA /* Put record to VSAM.
080 IF RC-EC IS LOVALUE /* Ck fdbk codes.
090 GOTO 050. /* Zeroes ok.
095 * Abnormal feedback codes dump areas, CLOSE and EOJ occurs.
100 PRINTHEX INF1-100 /* Prt-hex record area.
110 PRINTHEX WST1-13 /* Dump feedback codes.
120 PRINTHEX CTA1-B /* Prt-hex rec ctr.
190 * EOJ Processing
200 CALL QUIKVSAM C'CLOSE' /* CALL to CLOSE data sets.
250 GOTO EOJ /* Force EOJ and rec count.
500 END
/*

QUIKVSAM 7–31

Examples

VSE JCL Example
// JOB SAMPLE3 QUIKVSAM DATA SET LOAD
// ASSGN SYS010,280 ASSIGN INPUT IF REQUIRED
// TLBL INF,'BACKUP'
// ASSGN SYS016,152 ASSIGN OUTPUT IF REQUIRED
// DLBL DATSET1,'DATASET.MASTER',,VSAM
// EXTENT SYS016,VOLSER
// EXEC QUKBJOB
INFTAPE40000100SSYS010

MVS JCL Example
//SAMPLE3 JOB (800-0000,000),NAME QUIKVSAM DATA SET LOAD
//S1 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//DATSET1 DD DSN=DATASET.MASTER,DISP=OLD
//SYSUT1 DD DSN=BACKUP,DISP=OLD,UNIT=TAPE,VOL=SER=VOLSER
//SYSIN DD *

7–32 VISION:Report Reference Guide

Examples

Example 4 — Retrieve Records Sequentially for UPDATE or ERASE

The following statements show how to sequentially retrieve VSAM records for
possible updating or deletion. A count of records read, updated, and erased is
accumulated.

This example is applicable to KSDS and ESDS data sets with fixed or variable
length records (ESDS without erase).

005 HDR 1A 1 $IPLDAT$ QUIKVSAM DATA SET UPDATE/ERASE
007 HDR 2A 0 RECORDS-READ UPDATED ERASED
010 CALL QUIKVSAM C'MASTER ' C'OPTION' WST201 /* Setup feedback area.
090 *
100 CALL QUIKVSAM C'MASTER ' C'GET-UPD' WST1 /* Get a record/for upd.
120 PERFORM 900 THRU 919 /* Do feedback check.
130 ACCUM ONE IN A 5 BYTE CTA, ON BREAKS PRINT IN POS 001 0C
140 IF WST66-70-P IS ZERO /* Check if YTD $ is zero.
150 GOTO 300. /* Yes - go delete it.
200 MOVE ZEROS TO WST66-70-P /* Not zero, zero fld.
220 CALL QUIKVSAM C'MASTER ' C'UPDATE' WST1 /* Write back record.
230 PERFORM 900 THRU 919 /* Do feedback check.
250 ACCUM ONE IN A 5 BYTE CTB, ON BREAKS PRINT IN POS 021 0C
260 GOTO 100
290 *
300 CALL QUIKVSAM C'MASTER ' C'ERASE' /* ERASE rec, inactive.
320 PERFORM 900 THRU 919 /* Do feedback check.
330 ACCUM ONE IN A 5 BYTE CTC, ON BREAKS PRINT IN POS 041 0C
350 GOTO 100
890 * TEST FOR EOD/EOF, RC/EC FOR ABNORMAL CONDITIONS
900 IF WST1-5 IS HIVALUE /* Test for EOF.
905 GOTO 950.
910 IF WST208-209 IS NOT LOVALUE /* Check RC/EC codes.
915 GOTO 930.
919 EXIT /* Return when all is well.
929 * Prt-hex active areas on abnormal RC/EC condition
930 PRINTHEX WST1 WST204-207 /* Prt hex variable.
940 PRINTHEX WST201-213 /* Display WST area.
949 * E-O-J processing
950 CALL QUIKVSAM C'CLOSE' /* Close all VSAM data sets.
960 GOTO EOJ /* Force EOJ.
990 END
/*

VSE JCL Example
// JOB SAMPLE4 QUIKVSAM UPDATE/ERASE
// ASSGN SYS010,163 ASSIGN INPUT IF REQUIRED
// DLBL MASTER,'APPL.MASTER',,VSAM
// EXTENT SYS010,VOLSER
// EXEC QUKBJOB

MVS JCL Example
//SAMPLE4 JOB (800-0000,000) BOB QUIKVSAM UPDATE/ERASE
//S1 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//MASTER DD DSN=APPL.MASTER,DISP=OLD
//SYSIN DD *

QUIKVSAM 7–33

Examples

Example 5 — Random/Sequential Retrieve with UPDATE and ADD

The example below illustrates the use of two VSAM data sets. An ESDS defined
cluster is being read sequentially (line 050), placing the record in an area
beginning at CTA1.

A search key (CTA5) from the ESDS is used to retrieve records randomly from a
KSDS (line 100). Records are retrieved into an area beginning at CTA401, and
feedback values are placed in WST21-33.

Depending on whether or not a record was found matching the search key, an
update (line 200) or add (line 300) request is made to QUIKVSAM.

When the end of data on the ESDS is recognized (line 900), control is transferred
to line 950; a call is made to close the VSAM data sets.

010 CALL QUIKVSAM C'ESDS ' C'OPTION' WST1 /* Setup fdbk areas.
020 CALL QUIKVSAM C'KSDS ' C'OPTION' WST21
050 CALL QUIKVSAM C'ESDS ' C'GET' CTA1 /*Get a record.
060 PERFORM 900 THRU 919 /*Ck EOF, RC/EC.
100 CALL QUIKVSAM C'KSDS 'C'READ-UPD' CTA401 CTA5 /*Read KSDS for upd.
120 IF CTA401-405 IS HIVALUE /*Test if record found.
130 GOTO 250.
140 PERFORM 920 THRU 929 /*Ck RC/EC.
150 MOVE CTA21-30 TO CTA451 /*Do update
160 ADD CTA41-48 TO CTA461-466-P /*processing.
200 CALL QUIKVSAM C'KSDS ' C'UPDATE' CTA401 /*Rewrite KSDS.
210 PERFORM 920 THRU 929 /*Ck RC/EC.
220 GOTO 050
250 MOVE SPACES TO CTA401-800 /*Clear area.

260 MOVE WST4-7 TO WST24-27 /*Put reclen in feedback.
270 CALL QUIKMOVE CTA1 CTA401 WST6 /*MOVE var length rec.
300 CALL QUIKVSAM C'KSDS ' C'ADD' CTA401 /*Write record.
310 PERFORM 920 THRU 929 /*Ck RC/EC.
320 GOTO 050
900 IF CTA1-5 IS HIVALUE /*Test for EOF.
905 GOTO 950.
910 IF WST8-9 IS NOT LOVALUE /*Test for abnormal conditions.
915 GOTO 930.
919 EXIT /*Ok, return.

920 IF WST28-29 IS NOT LOVALUE /* Test for abnormal.
925 GOTO 930.
929 EXIT /* Ok, return.
930 PRINTHEX WST1-40 /* Prt hex feedback.
940 PRINTHEX CTA1-800 /* Prt hex records.
950 CALL QUIKVSAM C'CLOSE' /* CLOSE VSAM files.
960 GOTO EOJ /* Force EOJ.
990 END
/*

7–34 VISION:Report Reference Guide

Examples

VSE JCL Example
// JOB SAMPLE5 ESDS/KSDS GET/UPDATE/ADD
// ASSGN SYS008,152 ASSIGN INPUT IF REQUIRED
// DLBL ESDS,'TRANS.DATA',,VSAM
// EXTENT SYS008,VOLSER
// ASSGN SYS009,153 ASSIGN INPUT IF REQUIRED
// DLBL KSDS,'KSDS.MASTER',,VSAM
// EXTENT SYS009,VOLSER
// EXEC QUKBJOB

MVS JCL Example
//SAMPLE5 JOB (800-0000,000) ESDS/KSDS GET/UPDATE/ADD
//S1 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//ESDS DD DSN=TRANS.DATA,DISP=OLD
//KSDS DD DSN=KSDS.MASTER,DISP=OLD
//SYSIN DD *

QUIKVSAM 7–35

Examples

Example 6 — Point and Sequential Retrieval

The succeeding example uses a data key found at INF1 to position (point) the
data set for sequential retrieval beginning with the record matching the key.

The point call (line 100) shown uses the KEQ (key equal) option to search for a
record matching the search key argument. The default on a point call is KGE
(key greater or equal).

The return/error codes are tested for a successful point operation (line 110).
Records are read from the data set (line 200) until a change in group occurs.

010 CALL QUIKVSAM C'DATSET2 ' C'OPTION' WST101 /* Setup fdbk area.
040 ATEND 950
050 GET /* GET trigger ord.#.
100 CALL QUIKVSAM C'DATSET2 ' C'POINT' INF1 C'KEQ' /* Pos. to ord.#.
110 IF WST108-109 IS LOVALUE /* Check RC/EC.
120 GOTO 200.
140 MOVE INF1-20 TO PRT1 /* Indicate
150 MOVE C'ORDER NOT FOUND' TO PRT31 /* not found.
160 PRINT
170 GOTO 050
200 CALL QUIKVSAM C'DATSET2 ' C'GET' WST1 /* Get a VSAM rec.
210 IF WST108-109 IS NOT LOVALUE /* Check RC/EC.
220 GOTO 930.
230 IF WST1-10 IS NOT EQ TO INF1-10 /* Check for end of grp.
240 GOTO 050.
250 MOVE WST1-100 TO PRT1 /* Print ord rec.
260 PRINT
270 GOTO 200 /* GET next.
930 PRINTHEX INF1-20 /* Prt hex ord,
940 PRINTHEX WST1-120 /* RC/EC and rec area.
950 CALL QUIKVSAM C'CLOSE' /* CLOSE file.
960 GOTO EOJ. /* Force EOJ.
990 END
/*

Line 010 above opens VSAM file in update mode.

VSE JCL Example
// JOB SAMPLE6 VSAM POINT/SEQ
// ASSGN SYS010,161 ASSIGN INPUT IF REQUIRED
// DLBL DATSET2,'OPEN.ORDERS',,VSAM
// EXTENT SYS010,VOLSER
// EXEC QUKBJOB
INFCARD

MVS JCL Example
//SAMPLE6 JOB (800-0000,000),RON VSAM POINT/SEQ
//S1 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//DATSET2 DD DSN=OPEN.ORDERS,DISP=OLD
//SYSIN DD *

7–36 VISION:Report Reference Guide

Examples

Example 7 — Sequential Retrieval with BREAKS, Accumulative Reporting, and
Dummy INF Input

A call is made to QUIKVSAM to retrieve records from a payroll data set into the
INF area. This area is used for ACCUM reporting and BREAKs which must be
done in the INF area.

In the VSE JCL example shown following the code, the corresponding
definitions for the INF file are specified as IGN. In the MVS JCL example
definitions are specified as DUMMY.

000 HDR 1A 1 $IPLDAT$ PAYROLL DEMO
001 HDR 1B PAGE PG
002 HDR 2A 0 DATE OF DATE OF PREVIOUS
003 HDR 2B HRLY THIS Y.T.D.
004 HDR 3APLT DEPT EMP. EMPLOYEE NAME .BIRTH..EMPLOYMENT EDUC YTD GROSS
005 HDR 3B WORK RATE WEEK GROSS STATE TAX YTD FICA CURR FICA
010 BREAK 1 INF3-5 SB 1 SA 1 PRINT C'DEPT TOTS' IN TOT POS 011
050 CALL QUIKVSAM C'PRMASTR ' C'GET' INF1
051 IF INF1-5 IS HIVALUE /* Test for EOF.
052 GOTO EOJ.
054 IF INF3-5 IS EQ TO C'005' OR
055 IF INF3-5 IS EQ TO C'010'
056 GO TO 060.
057 GO TO 050
060 CHECKBREAKS
120 MOVE INF1-2 TO PRT2 /* MOVE plant to print.
130 MOVE INF3-5 TO PRT6 /* MOVE dept to print.
150 MOVE INF6-9 TO PRT10 0 /* MOVE emp nr and zero
suppress.
160 MOVE INF10-25 TO PRT15 /* MOVE emp name to print.
170 MOVE INF26-27 TO PRT32 /* MOVE date of birth.
171 MOVE INF28-29 TO PRT35
172 MOVE INF30-31 TO PRT38
174 MOVE INF32-33 TO PRT42 /* MOVE date of employment.
175 MOVE INF36-37 TO PRT48
180 MOVE INF38-39 TO PRT52 /* MOVE education.
185 MOVE INF54-57-P TO PRT55 2C /* MOVE previous YTD gross.

190 MOVE INF50-53 TO PRT66 2 /* MOVE hours worked.
200 MOVE INF46-49 TO PRT72 3 /* MOVE hourly rate.
210 MOVE INF50-53 2D BY INF46 49 3D GIVING WST1-4-P 2DR
 /* Extend hrs wkd.
230 MOVE WST1-4-P TO PRT78 2C /* This weeks gross.
240 MOVE INF58-51-B TO WST 5-8-P

 /* Binary YTD state tax., cvt to pkd dec.
250 MOVE WST5-8-P TO PRT89 2C /* Edit YTD st tax to print.
260 MOVE INF62-66 TO PRT102 2C /* MOVE YTD fica to print.
261 MULT WST1-4-P 2D BY C'058' 3D GIVING WST9-11-P 2DR /* Calc current FICA.
265 MOVE WST9-11-P TO PRT113 2 /* MOVE current FICA to print.
268 PRINT /* PRINT the detail line.
300 ACCUM INF54-57-P IN A 5 BYTE CTR ON BREAKS PRINT IN POS 052 2C
310 ACCUM WST1-4-P IN A 4 BYTE CTR ON BREAKS PRINT IN POS 078 2C
320 ACCUM WST9-11-P IN A 4 BYTE CTR ON BREAKS PRINT IN POS 110 2C
330 GO TO 060
999 END
/*

QUIKVSAM 7–37

Examples

VSE JCL Example
// JOB SAMPLE7 QUIKVSAM W/ACCUM
// ASSGN SYS010,IGN ASSIGN INF IGNORE
// ASSGN SYS012,134 ASSIGN INPUT IF REQUIRED
// DLBL PRMSTR,'VSAM.PAYROLL.DEMO',,VSAM
// EXTENT SYS012,VOLSER
// EXEC QUKBJOB
INFTAPE01000100SSYS010

MVS JCL Example
//SAMPLE7 JOB (800-0000,000),JIM QUIKVSAM W/ACCUM
//S1 EXEC PGM=QUIKJOB
//SYSPRINT DD SYSOUT=A
//PRMASTR DD DSN=VSAM.PAYROLL.DEMO,DISP=OLD
//SYSUT1 DD DUMMY,DCB=(RECFM=F,LRECL=100,BLKSIZE=100)
//SYSIN DD *

7–38 VISION:Report Reference Guide

Appendix

A

Invoking VISION:Report from
VISION:Results or VISION:Eighty

From your VISION:Results (formerly known as DYL-280 II) or VISION:Eighty
program (formerly known as DYL-280), you can invoke stand-alone
VISION:Report applications and VISION:Report applications that access IMS or
CA-IDMS/DB data bases. The following pages contain three examples of JCL
statements and VISION:Report programs that illustrate how to accomplish this.

■ MVS and VSE JCL invoking VISION:Report from VISION:Results or
VISION:Eighty (see MVS JCL through Basic VISION:Report Program).

■ MVS JCL for invoking VISION:Report accessing CA-IDMS/DB (see
VISION:Report MVS JCL with CA-IDMS/DB and A Typical VISION:Report
Program to Call CA-IDMS/DB Functions).

■ MVS JCL for invoking VISION:Report accessing IMS (see VISION:Report
MVS JCL with IMS and A Typical VISION:Report Program to Call IMS
Functions).

Each example consists of two parts: the JCL statements and the VISION:Report
program. The VSE JCL required for these jobs would be the equivalent of the
MVS JCL. All three examples have the following in common:

■ The size of the REGION in the STEP01 statement is user-defined because it
depends on the size of the program and what other applications it may be
accessing

■ Wherever the word “user” or “your” appears in lowercase in the JCL
statements, a user-defined file name (if applicable) should be entered.

■ The SYS004 statement in the JCL must be coded exactly in the format shown
in the examples.

■ The VISION:Report program must begin with the VISION:Results or
VISION:Eighty statement OPTION QUIKJOB.

Invoking VISION:Report from VISION:Results or VISION:Eighty A–1

DYLQKIMS

DYLQKIMS
The VISION:Results or VISION:Eighty program executed in the MVS JCL with
CA-IDMS/DB is DYLQIDMS; the MVS JCL with IMS is DYLQKIMS. Note that
the installation procedures and the use of these two programs are the same as
the VISION:Report programs QUIKIDMS and QUIKIMS as outlined in Chapter
6, Optional Material. (See the examples—STEP01 statements—on
VISION:Report MVS JCL with CA-IDMS/DB and VISION:Report MVS JCL
with IMS.)

To run VISION:Report from a VISION:Results or VISION:Eighty program, you
must be on VISION:Results Release 3.0 or later or VISION:Eighty Release 6.0 or
later.

MVS JCL
//JOB (your standard job statement)
//STEP01 EXEC PGM=DYL280,REGION=768K

//STEPLIB DD DSN=your.DYL280.LOADLIB, VISION:Results Release 3.0
// DISP=SHR or later or VISION:Eighty
 Release 6.0 or later
 load library

// DD DSN=your.QUIKJOB.MVS.LOADLIB, VISION:Report
// DISP=SHR load library
//SYSPRINT DD SYSOUT=*
//SYS280R DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYS004 DD UNIT=ISPDA,SPACE=(TRK,(5)) required format when
 calling VISION:Report
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR required
//SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,(20,20)) only if
//SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(20,20)) SORT is used
//SORTWK03 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSDET DD * for VISION:Report
 card input only
 (if applicable)

//SYSIN DD *
 OPTION QUIKJOB
 .
 . VISION:Report program
 .

A–2 VISION:Report Reference Guide

VSE JCL

VSE JCL
// JOB OPTIONQJ
// DLBL DYL282,'DYL280II.SP30.LIBS' VISION:EIGHTY PHASE LIB
// EXTENT ,DOS001
// DLBL QIKCIL,'QUIKJOB.LIB' VISION:REPORT PHASE LIB
// EXTENT ,DOSLB1
// LIBDEF PHASE,SEARCH=(DYL282.PHASE,QIKCIL.PHASE)
// ASSGN SYS004,DISK,VOL=DOSWRK,SHR
// DLBL IJSYS04,'==WORK1',0 required
// EXTENT SYS004.DOSWRK,1,0,1,10
// EXEC DYL280,SIZE=768K
 OPTION QUIKJOB
 .
 . VISION:Report program
 .
/*
/&

Basic VISION:Report Program
OPTION QUIKJOB is a VISION:Results or VISION:Eighty statement that must
be present in order to call VISION:Report from VISION:Results or
VISION:Eighty.

The OPTION SEQCHK=NO statement is the VISION:Report option, and
SEQCHK=NO is only one of the operands available. If no VISION:Report option
statement is entered, the default values are used.

OPTION QUIKJOB
OPTION SEQCHK=NO
 1000 GET DET ATEND EOJ
 MOVE DET1-80 TO PRT1
 PRINT
 GO TO 1000
 END

ENTER INPUT DATA RECORDS FOR SYSDET FILE HERE.

Invoking VISION:Report from VISION:Results or VISION:Eighty A–3

VISION:Report MVS JCL with CA-IDMS/DB

VISION:Report MVS JCL with CA-IDMS/DB
//JOB (your standard job statement)
//STEP01 EXEC PGM=DYLQIDMS,REGION=2500K
//STEPLIB DD DSN=your.QUIKJOB.MVS.LOADLIB, VISION:Report
// DISP=SHR load library

// DD DSN=your.DYL280.LOADLIB, VISION:Results Release 3.0
 DISP-SHR or later or VISION:Eighty
 Release 6.0 or later
 load library
// DD DSN=IDMS.PROD10.LOADLIB, CA-IDMS/DB
// DISP=SHR load library
// DD DSN=user.QUIK.LOAD,DISP=SHR user's application
 program library
//SYSCOPY DD DSN=user.DYLIDMS.MVS, user's copy
// DISP=SHR library
//SYSPRINT DD SYSOUT=*
//SYS280R DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYS004 DD UNIT=ISPDA,SPACE=(TRK,(5)) required format when
 calling VISION:Report
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR required only
//SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,(20,20)) if SORT is used
//SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SORTWK03 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSJRNL DD DUMMY
//J1JRNL DD DUMMY
//J2JRNL DD DUMMY
//J3JRNL DD DUMMY
//J4J4NL DD DUMMY
//DICTDB DD DSN=IDMS.PROD10.DICTDB, CA-IDMS/DB
// DISP=SHR dictionary
//DYIDMSIN DD DSN=user.QUIK.LOAD,DISP=SHR user's VISION:Report
 application library
//ORGDEMO DD DSN=IDMS.PROD10.ORGDEMO, CA-IDMS/DB
// DISP=SHR data base
//SYSDET DD * for VISION:Report
 card input only
 (if applicable)
//SYSIN DD *

A–4 VISION:Report Reference Guide

A Typical VISION:Report Program to Call CA-IDMS/DB Functions

A Typical VISION:Report Program to Call CA-IDMS/DB
Functions

OPTION QUIKJOB is a VISION:Results or VISION:Eighty statement that must
be present in order to call VISION:Report from VISION:Results or
VISION:Eighty.

The OPTION SEQCHK=NO statement is the VISION:Report option, and
SEQCHK=NO is only one of the operands available. If no VISION:Report option
statement is entered, the default values are used.

Note: For more information on DYLQKIMS see DYLQKIMS.

OPTION QUIKJOB
OPTION SEQCHK=NO
EQU BIND-RUN-UNIT PCB155
EQU BIND-RN PCB144
EQU READY-RETRIEVE PCB133
EQU OBTN-1ST-RN-AN PCB115
EQU OBTN-NXT-RP=AN PCB107
EQU FINISH PCB98
EQU OBTAIN-SUF PCB139
EQU COMM-BLOCK PCB1-216
EQU PGM-NAME PCB1-8
EQU ERR-STAT PCB9-12
EQU DBKEY PCB13-16-B
EQU DIR-DBKEY PCB197-200-B
EQU REC-OCCUR PCB209-212-B
EQU DML-SEQ PCB213-216-B
EQU OFFICE-RN SAV1-16
EQU OFFICE-AN SAV17-32
EQU OFFICE WST1-90
EQU OFFICE-STREET WST1-20
EQU OFFICE-CITY WST21-35
EQU OFFICE-STATE WST36-37
EQU OFFICE-ZIP WST38-46
EQU OFFICE-CODE WST47-49
EQU EMPNO WST50-55
EQU EMN WST56-56
EQU FNAME WST57-68
EQU FNB WST69-69
EQU LNAME WST70-84
EQU MMMMMM WST85-85
EQU SALARY WST86-90

HDR 1A 1 DYL CALLING QUIKIDMS
HDR 1B $IPLDAT$ PAGE PG
(Computer display)8 GET DET ATEND 10
 MOVE DET1-80 TO PRT1
 PRINT
 GOTO 8

10 MOVE SPACE TO SAV1-100
 MOVE C'QUIKIDMS' TO PGM-NAME
 MOVE ZEROES TO DBKEY
 MOVE ZEROES TO DIR-DBKEY
 MOVE ZEROES TO REC-OCCUR
 MOVE C'1' TO DML-SEQ

Invoking VISION:Report from VISION:Results or VISION:Eighty A–5

A Typical VISION:Report Program to Call CA-IDMS/DB Functions

 MOVE C'OFFICE' TO OFFICE-RN
 MOVE C'ORG-DEMO-REGION' TO OFFICE AN

20 CALL QJBIDMS BIND-RUN-UNIT COMM-BLOCK
 C'EMPSS01'
25 CALL QJBIDMS BIND-RN OFFICE-RN OFFICE
30 CALL QJBIDMS READY-RETRIEVE
35 PERFORM 900 THRU 990
40 CALL QJBIDMS OBTN-1ST-RN-AN OFFICE-RN
 OFFICE-AN OBTAIN-SUF
 GOTO 60
50 CALL QJBIDMS OBTN-NXT-RN-AN OFFICE-RN
 OFFICE-AN OBTAIN-SUF
60 IF ERR-STAT IS EQ TO C'0307'
 GOTO 200.
70 PERFORM 900 THRU 990
90 MOVE OFFICE-STREET TO PRT1-20
 MOVE OFFICE-CITY TO PRT23-37
 MOVE OFFICE-STATE TO PRT40-41
 MOVE OFFICE-ZIP TO PRT44-52
 MOVE OFFICE-CODE TO PRT55-57
 MOVE EMPNO TO PRT60-65
 MOVE EMN TO PRT68-68
 MOVE FNAME TO PRT71-82
 MOVE FNB TO PRT85-85
 MOVE LNAME TO PRT88-102
 MOVE MMMMMM TO PRT105-105
 MOVE SALARY TO PRT107-112
 PRINT
100 GOTO 50

200 CALL QJBIDMS FINISH
 GOTO EOJ

900 IF ERR-STAT IS EQ TO C'0000'
 GOTO 990.
 MOVE C'QUIKIDMS ABNORMAL STATUS' TO PRT1
 PRINT DOUBLESPACE
 PRINTHEX COMM-BLOCK
 PRINTHEX OFFICE
 GOTO EOJ

990 EXIT
 END

ENTER INPUT DATA RECORDS FOR SYSDET FILE HERE.

A–6 VISION:Report Reference Guide

VISION:Report MVS JCL with IMS

VISION:Report MVS JCL with IMS
//JOB (your standard job statement)
//STEP01 EXEC PGM=DFSRRC00,REGION=4500K,
// PARM='DLI,DYLQKIMS,PSBQREAD'
//STEPLIB DD DSN=your.DYL280.LOADLIB, VISION:Results Release 3.0
 DISP=SHR or later or VISION:Eighty
 Release 6.0 or later
 load library
// DD DSN=your.QUIKJOB.MVS.LOADLIB, VISION:Report
// DISP=SHR load library
// DD DSN=IMSVS.RESLIB,DISP=SHR IMS load
//IMS DD user.IMS.LOAD,DISP=SHR library
//DBDLIB DD DSN=user.IMS.LOAD,DISP=SHR user's DBDLIB
//PSBLIB DD DSN=user.IMS.LOAD,DISP=SHR user's PSBLIB
//SYSCOPY DD DSN=user.IMS.LOAD,DISP=SHR user's COPYLIB
//SYSPRINT DD SYSOUT=*
//ABNLIGNR DD DUMMY
//SYSUDUMP DD SYSOUT=*
//SYS280R DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYS004 DD UNIT=ISPDA,SPACE=(TRK(5)) required format when
 calling VISION:Report
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR required
//SORTWK01 DD UNIT=SYSDA.SPACE=(TRK,(20,20)) only if
//SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(20,20)) SORT is used
//SORTWK03 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR IBM IMS
 library
//DFSVSAMP DD DSN=user.xx.DFSVSAMP(xxxxxx), buffer
// DISP=SHR information
//IEFRDER DD DUMMY for IMS
//ARMFIDX DD DSN=user.VSAM.ARMFIDX,DISP=SHR IMS
//ARMFIMS DD DSN=user.VSAM.ARMFIMS,DISP=SHR data base
//SYSDET DD * for VISION:Report
 card input only
 if applicable
//SYSIN DD *

Invoking VISION:Report from VISION:Results or VISION:Eighty A–7

A Typical VISION:Report Program to Call IMS Functions

A Typical VISION:Report Program to Call IMS Functions
The OPTION QUIKJOB statement is a VISION:Results or VISION:Eighty
requirement and must be present in order for VISION:Report to run.

The OPTION SEQCHK=NO statement is the VISION:Report option, and
SEQCHK=NO is only one of the operands available. If no VISION:Report option
statement is entered, the default values are used. (WSTSIZE=5000 is required
only for this sample program.)

Note: For more information on DYLQKIMS, see DYLQKIMS.

OPTION QUIKJOB
OPTION SEQCHK=NO,WSTSIZE=5000
EQU STATUS-CODE PCB11-12
EQU COUNT WST1-4 0C ZERO

1200 CALL QJBTDLI C'GN ' C'01' WST1000
 ADD C'1' TO COUNT
 IF STATUS-CODE EQ C'GB'
 GOTO 1600.
 IF COUNT GT C'0100'
 GOTO 1600.
 IF STATUS-CODE IS EQ TO C'GA' OR
 IF STATUS-CODE IS EQ TO C'GK'
 GOTO 1500.
 IF STATUS-CODE IS NOT EQ TO C' '
 GOTO 1600.
1500 IF COUNT GT C'0050'
 GOTO 1200.
1550 MOVE COUNT TO PRT5-8
 MOVE STATUS-CODE TO PRT14
 MOVE WST1000-1050 TO PRT20
 PRINT
 GOTO 1200.

1600 MOVE BLANK TO PRT1-80
 MOVE STATUS-CODE TO PRT30-31
 MOVE C'STATUS CODE' TO PRT15-25
 MOVE C'COUNT = ' TO PRT35-42
 MOVE COUNT TO PRT47-50
 PRINT
 READ INPUT DATA

2000 GET DET ATEND EOJ
 MOVE DET1-80 PRT1
 PRINT
 GO TO 2000.
 END

ENTER DATA INPUT RECORDS FOR SYSDET FILE HERE.

A–8 VISION:Report Reference Guide

 Index–1

Index

#EQU, 5-4

$

$datanames$, 3-51, 3-171

$DATE$, 6-76

$IPLDAT$, 6-76

$IPLDYYYY$, 6-76

$JDYYYY$, 6-76

$JOBNAM$, 6-76

$PAGE$, 6-76

PG, 6-76

TIM, 6-76

3

3333 ABEND, 6-46, 6-51, 6-52

3336 ABEND, 5-3

3525 punch/interpret subroutine, 6-17

3540 floppy disk subroutine, 6-34

4

4095 ABEND, 2-6

A

ABEND
ACCUM, 3-8, 3-10
codes 0000-4095, 3-2
MVS SYSABEND, 3-117
QJMDUMP, 3-111
statement, 2-6, 3-2
U331DMP, 3-116
U333ABE, 3-116
U334DMP, 3-116
U335DMP, 3-116
U338DMP, 3-117
U339DMP, 3-117
UABNDMP, 3-116
VLABEND, 3-117

ACCEPT, 3-3, 3-52

access method services
AMS, 7-29

ACCUM, 3-4, 3-5, 3-6, 3-8, 3-9, 3-10, 3-11, 3-16
before PRINT, 3-120
blank when zero, 3-9, 3-11
calculate, 3-4
examples, 3-6, 4-27, 4-29, 4-41, 4-45, 4-48, 4-51, 4-
54
format, 3-8, 3-10
IF...NUMERIC, 3-8, 3-10
NONE, 3-4, 3-8
run time option, 3-103
simple summary, 3-4
summarize, 3-4
with breaks, 3-122
with decimals, 3-102
with QUIKVSAM, 7-37
with QUIKVSAM LOAD, 7-31
with REPORT statement, 3-5, 3-6

Index–2 VISION:Report Reference Guide

accumulators, 2-4
CTA-CTP, 3-4, 3-8, 3-10
CTR, 3-4

ADD, 3-4, 3-12
examples, 4-91

ADDRECORD, 3-13
error word, 3-13
example, 4-75

addressable accumulation, 3-4

AMODE (31), 3-19

AMORTIZATION
example, 4-56

AMS (Access Method Services)
examples, 7-29

AND, 3-59, 3-179
example, 3-60, 3-179

AND (Logical AND), 3-14

ANSINT, 3-24

arithmetic comparison, 3-60

ASA carriage control characters, 3-50, 6-76, 6-78

ASCII/EBCDIC translator, 6-97

ATEND, 3-15, 3-47
at EOJ, 3-15, 3-132
error, 3-16
examples, 3-82, 3-96
IF...ONTABLE, 3-166
user responsibility, 3-15
with GET, 3-46, 3-67
with INF, 3-15
with LIMITREADS, 3-67
with RETURN (SORT), 3-132
with SAMPLE, 3-136

automated tabling routine, 6-81
binary search, 6-90
delete a table, 6-92
determining size of table area, 6-95
load a table, 6-81
replace an entry, 6-91
retrieve a particular entry, 6-89
retrieve an entry starting at the beginning, 6-88
start at specified entry, 6-87
user error checking, 6-93

automatic summary reporting, 3-16

B

BLANK, 3-57

BLANK WHEN ZERO
BWZ, 3-102

BLANK WHEN ZERO
BWZ, 3-9, 3-11, 3-75, 3-98

BREAK, 3-25
1-9 levels, 3-17
CHECKBREAKS, 3-25
description, 3-17
examples, 3-26, 4-41, 4-45, 4-48, 4-51, 4-54
input records, 3-16
SAn, 3-17
SBn, 3-17
with ACCUM, 3-6
with CHECKBREAKS, 3-18
with PAGETOTALS, 3-119
with PRINT, 3-18
with REPORT, 3-17
without CHECKBREAKS, 3-26

BWZ see BLANK WHEN ZERO, 3-9, 3-11, 3-75, 3-102

C

CA-IDMS/DB, 3-21, 6-37
DYLQIDMS, A-2

CA-IDMS/DB access interface, 6-36

CA-Librarian
DLIBGET interface, 6-7
TLIBGET interface, 6-7

CA-Librarian Interface Assistance, 6-7, 6-40

CALL, 3-19, 6-83
COBOL considerations, 3-23
MVS, 3-21
technical considerations, 3-21
user coded routines, 3-21
VSE, 3-21

CALLCT, 3-102

CALLSZ, 3-19

CANCEL macro, 3-2

 Index–3

CA-Panvalet, 6-50
QUIKIPAN, 6-50

carriage control characters
see ASA carriage control characters, 6-76

CDLOAD (VSE), 3-21

CFLEOPT, 3-102

character literal, 3-37, 3-71, 3-81

CHECKBREAKS, 3-16, 3-18, 3-25
examples, 3-18, 4-45, 4-48, 4-51, 4-54
with ACCUM, 3-6
with PAGETOTALS, 3-119
with PERFORM/EXIT, 3-26

CLOSE, 3-28, 6-78
example, 3-28, 3-169
QUIKVSAM, 7-11

close report file, 6-78

CLOSER, 3-29
example, 3-29
QUIKVSAM, 7-12

CLRVIP, 3-102

CLRVOP, 3-103

COBOL, 3-23
CALL statements, 3-21
COBOL II, 3-24
DOS/VS, 3-24
OS/VS, 3-24

codes
ABEND, 6-30
edit codes, 3-129
error codes, 6-30
SORT, 3-114

communication area, 2-6

concatenate files
example, 4-17

CONDATE, 3-30
edit masks, 3-30
examples, 3-30
EXDATE, 3-30
with EXDATE, 3-30

constants
BLANK, 3-71, 3-81
HIVALUE, 3-71, 3-81
LOVALUE, 3-71, 3-81
SPACE, 3-71, 3-81
ZERO, 3-71, 3-81

contacting Computer Associates
web page, B-1

control break, 3-16

copy to tape, 4-6

counter areas (CTA-CTP), 4-37

CRSIGN, 3-75, 3-80, 3-103

CTA-CTP addressable accumulators, 2-4, 3-4
CTR accumulators, 3-4

CUMULATIVE, 3-119

D

data area, 2-1, 2-3
pointers, 3-20

data field formats, 3-86
binary, 3-87
EBCDIC, 3-86
packed, 3-86

data perpetuation move, 6-67

data selection characters, 3-84

date calculation, 6-18

DBIRTDN, 3-103

DBOMP, 6-1, 6-2

debugging
TRACE, 3-20

declarative functions
HDR, 6-75

DELETE, 3-31
example, 4-75

delete called routines, 3-33

DELUPGM, 3-103

DET, 2-1, 2-4, 3-34

DETDD, 3-103

DISPLAY, 3-31
examples, 3-31

DIVD, 3-4, 3-32
decimal alignment required, 3-32
fixed point divide, 3-32
zero divide, 3-32, 3-36

DL/I, 3-21

Index–4 VISION:Report Reference Guide

DL/I interface, 6-41

DOHDR (pageheaders), 6-78

DOHEADERS, 3-33

DROP, 3-33

DUMPALL, 3-103

DYL-280
VISION:Eighty, A-1

DYL-280 II
VISION:Results, A-1

DYLQKIMS, A-2

E

EBCDIC
literal, 3-20

Edit, 3-103

edit codes, 3-129

edit fill character, 3-85

edit mask, 3-89
attributes, 3-85
patterns, 3-84
QUIKEMSK

QUKBEMSK, 3-89

EDITALL, 3-103

EDTNAME, 3-103

EJECT, 3-34

END, 3-34
MVS example, 3-35
VSE example, 3-35

EOF processing, 3-15, 3-26, 3-47, 3-136
ATEND, 3-15
considerations, 3-15, 3-46
examples, 3-46
GET, 3-46

EOJ processing, 3-26, 3-48, 3-136

EQU, 3-36, 3-37
examples, 3-38, 3-39, 4-70
for VAL area, 3-39

equated data name, 3-71, 3-81

ERASE, 7-6
examples, 4-91
QUIKVSAM, 7-5, 7-13

error codes (RC/EC), 3-13

EUROPTN, 3-104

Examples
ACCUM, 4-27, 4-29, 4-41, 4-48, 4-51, 4-54, 4-66
ACCUM using CTR, 4-45
ADD, 4-91
ADDRECORD, 4-75
amortization, 4-56
BREAK, 4-41, 4-45, 4-48, 4-51, 4-54, 4-66
CHECKBREAKS, 4-45, 4-48, 4-51, 4-54, 4-66
concatenate, 4-17
copy to tape, 4-6
DELETE, 4-75
EQU, 4-70
ERASE, 4-91
file maintenance, 4-19
file matching, 4-19, 4-65
file merging, 4-17
GET, 4-72, 4-78, 4-81, 4-86
GET SETGENKEY, 4-73
GET-UPD, 4-91
HDR, 4-78
IF, 4-78, 4-101, 4-105
indexing, 4-41
LIMITREADS, 4-43
LIST=NO, 4-78
LOAD, 4-91
MOVE VARIABLE LENGTH, 4-70
negative field testing, 4-21
ONERROR, 4-86
OPEN, 4-81, 4-86, 4-91
OPTION, 4-91
PAGETOTALS, 4-43
POINT, 4-91
PRINT REPORT SUMMARY, 4-68
PRINTHEX, 4-13, 4-72
QUIKINCL, 4-34
QUIKIPDS, 4-34, 4-78
QUIKMOVE, 4-11
QUIKVSAM, 4-37
random access, 4-75
range checking, 4-21
READ, 4-75, 4-81, 4-86, 4-91
READ-UPD, 4-91
record matching, 4-65
REPORT, 4-66
REVERSE WHEN, 4-70
REWRITE, 4-75, 4-81, 4-86
SET PCC, 4-70

 Index–5

SETGENKEY, 4-81, 4-86
SETPTA, 4-81, 4-86
Sorting, 4-15
SUMMARY, 4-41, 4-48, 4-68
table (dynamic), 4-29
table checking, 4-23
table loading, 4-30
table lookup, 4-13, 4-21
table updating, 4-25
tape load, 4-6, 4-8
total time, 4-54
transaction processing, 4-65
troubleshooting, 4-97
UPDATE, 4-91
WHEN, 4-78
working storage, 4-37
WRITE, 4-74, 4-86

EXDATE, 3-44
with CONDATE, 3-30

EXIT, 3-45

expanded editing MOVE, 3-83

EXPANDED MOVE, 3-71

F

FAIR
CA-Librarian, 6-40

feedback area, 7-17, 7-19
QUIKVSAM, 7-17, 7-18

file maintenance
example, 4-19, 4-20

file matching
example, 4-19, 4-20, 4-65

file merging
example, 4-17

fixed point divide exception, 3-94

floppy disk support (QUIKFLOP), 6-34

FORCE, 3-84

FUN, 3-57
80-byte function area, 2-4

G

GENSIZE, 5-4

GET, 3-15, 3-46, 3-142
EOF processing, 3-46
examples, 4-72, 4-78, 4-81, 4-86
QUIKVSAM, 7-14
with ATEND, 3-46

GET SETGENKEY
example, 4-73

GETMAIN
MVS, 5-4

GET-UPD
examples, 4-91
QUIKVSAM, 7-15

GETVIS area, 3-103

GOTO, 3-48

H

HDA-HDF, 2-4

HDR
$datanames$, 3-51
$DATE$, 3-51
$IPLDAT$, 3-50
$IPLDYYYY$, 3-50
$JDYYYY$, 3-51
$JOBNAM$, 3-51
PAG, 3-51
$PAGE$, 3-51
$PAGES$, 3-51
PG, 3-51
TIM, 3-51
examples, 3-52, 4-78
format, 3-49
PRTSIZE=nnn, 3-52
QUIKRPT, 3-52
with ACCEPT, 3-52

HDRDOTS, 3-104, 3-131

header locations, 6-75

hexadecimal literals, 3-20, 3-37, 3-71, 3-81

HEXCOND
examples, 3-54
format, 3-53

Index–6 VISION:Report Reference Guide

HEXEXPD
examples, 3-55
format, 3-55

HIVALUE, 3-57

holiday dates table, 6-18

HOLIDAY macro, 6-30

host variables, 3-113

HOSTRTN, 3-104

I

ICCF
JOBCOM macro not supported, 6-16

IF, 3-56
AND, 3-60
arithmetic comparison, 3-60
bit testing, 3-63
EBCDIC fields, 3-58
ELSE and ENDIF, 3-64
examples, 3-59, 3-179, 4-78
nested, 3-65
operators, 3-57
OR, 3-59
parentheses, 3-63
true condition processing, 3-60

IF statements
examples, 4-43, 4-101, 4-105

IF...ONTABLE, 2-4, 3-111, 3-158, 4-13
advanced features, 3-166
binary search, 3-165
maximum table entries, 3-164
modifications, 3-166
serial search, 3-163
with TABLSPEC, 3-160, 3-162

IFNUM, 3-104

IF-OR, 3-59, 3-180

imperative
table space, 5-3

imperative functions
CLOSE, 6-78
DOHDR, 6-78
LCT, 6-77
SYSnnn, 6-77

IMS, 2-4, 3-21

DYLQKIMS, A-2
QUIKIMS, 2-4

IMS interface, 6-41

INA, 2-1

INADD, 3-104

INB, 2-1

INBDD, 3-99, 3-104

INC, 2-1, 2-4, 3-34, 3-95

INCDD, 3-104

INCLUDE, 6-46, 6-50, 6-52
nested, 6-53

IND, 2-1, 2-4, 3-34

INDD, 3-105

INDDD, 3-105

INEDD, 3-105

INF, 2-1, 2-4, 3-34, 3-95

INFDD, 3-105

ING - INZ, 2-1

INGDD, 3-105

INHDD, 3-105

INIDD, 3-105

INJDD, 3-105

INKDD, 3-105

INLDD, 3-105

INMDD, 3-105

INNDD, 3-105

INODD, 3-106

INPDD, 3-106

input files
DET, 3-127
INA-INZ, 3-127
number of, 2-15

INQDD, 3-106

INRDD, 3-106

INSDD, 3-106

INTDD, 3-106

 Index–7

INUDD, 3-106

INVDD, 3-106

INWDD, 3-106

INXDD, 3-106

INYDD, 3-106

INZDD, 3-106

ISAM
add a record, 6-65
random retrieval, 6-57, 6-64
update, 6-64

ISAM macro (VSE), 6-64

ISAM sort, 3-153

ISAM subroutine (MVS), 6-57

J

JCL examples
MVS, 6-79
MVS and QUIKVSAM, 7-30, 7-31, 7-32, 7-33, 7-
35, 7-36, 7-38
VSE, 6-8, 6-79
VSE and QUIKVSAM, 7-30, 7-31, 7-32, 7-33, 7-35,
7-36, 7-38

JOBCOM area, 6-16

JULIAN DATE
QUIKDATE, 2-7

JUSTIFY, 3-84

K

KSDS, 3-13

L

LCT, 2-4, 6-77

LIBR****, 6-1, 6-7

LIMITREADS, 3-67, 3-136
examples, 3-67, 4-43

LINECOUNT, 3-68, 3-110
LCT, 3-68

LIST, 3-98, 3-106

list edit masks, 6-15

LIST=NO
examples, 4-78

LISTABL, 3-107

LISTOPT, 3-107

literals, 2-3, 3-20
character literals, 3-37
EBCDIC literals, 3-20
hexadecimal literals, 3-20, 3-37
packed literals, 3-20

LITSIZE, 5-4

LOAD, 3-69
examples, 4-91

LOAD macro, 3-21

LOVALUE, 3-57

M

MBUFFER, 3-98, 3-107

memory dumps, 5-3

memory size requirements, 5-1

MOVCOND, 3-70

MOVCVTX, 3-107

MOVE, 3-71, 3-89
allowable forms, 3-79
binary field, 3-83
character literal, 3-83
coding rules, 3-74
data field formats, 3-86
EBCDIC field, 3-83
EBCDIC to EBCDIC, 3-74
edit mask, 3-83, 3-84, 3-85
edit mask attributes, 3-85, 3-88
edit mask examples, 3-88
european variation, 3-72
examples, 3-75, 3-77, 3-82
expanded editing, 3-83
non-quantitative fields, 3-83
options, 3-75
packed field, 3-83

Index–8 VISION:Report Reference Guide

print positions, 3-80, 3-81
print requirements, 3-80
QJEDIT macro, 3-84
receiving field, 3-71
run time option, 3-103
samples and rules, 3-76
sending field, 3-71, 3-81, 3-83
statement, 2-4
supplied patterns and attributes, 3-88
variable length, 3-81
warning, 3-81
with decimals, 3-102
zero suppression, 3-72

MOVE VARIABLE LENGTH
example, 4-70

MOVEXPD, 3-90

MOVNUM, 3-91

MOVZON, 3-92

MSHIFT, 3-93

MULT, 3-4, 3-94

multiple reports processor, 6-75

N

negative field testing, 4-21

NOBUFFER
replaced by MBUFFER=, 3-98

NOLIST
replaced by LIST=, 3-98

NOSEQ
replaced by SEQCHK=, 3-98

number of files, 2-15

numeric comparison, 3-60

O

obsolete options, 3-98

OFA, 3-95

OFADD, 3-107

OFA-OFD, 2-4

OFBDD, 3-107

OFCDD, 3-107

OFDDD, 3-107

OFEDD, 3-107

OFE-OFZ, 2-1

OFFDD, 3-107

OFGDD, 3-108

OFHDD, 3-108

OFIDD, 3-108

OFJDD, 3-108

OFKDD, 3-108

OFLDD, 3-108

OFMDD, 3-108

OFNDD, 3-108

OFODD, 3-108

OFPDD, 3-108

OFQDD, 3-108

OFRDD, 3-108

OFSDD, 3-108

OFTDD, 3-109

OFUDD, 3-109

OFVDD, 3-109

OFWDD, 3-109

OFx, 2-4

OFXDD, 3-109

OFYDD, 3-109

OFZDD, 3-109

ONERROR
error, 3-127
examples, 4-86
VSAM, 3-13, 3-31

ONTABLE, 3-57

 Index–9

OPEN, 3-95
examples, 4-81, 4-86, 4-91
QUIKVSAM, 7-17
RESET, 3-95

Option
Edit, 3-103

OPTION, 3-97, 3-98, 3-110, 3-117
BWZ, 3-102
CALLSZ, 3-23
CFLEOPT, 3-102
CLRVIP, 3-102
CLRVOP, 3-103
CRSIGN, 3-103
DBIRTH, 3-103
DELUPGM, 3-103
DETDD, 3-103
DUMPALL, 3-103
EDITALL, 3-103
EDTNAME, 3-103
EUROPTN, 3-104
HDRDOTS, 3-104
HOSTRTN, 3-104
IFNUM, 3-104
INADD, 3-104
INCDD, 3-104
INDD, 3-105
INDDD, 3-105
INEDD, 3-105
INFDD, 3-105
INGDD, 3-105
INHDD, 3-105
INIDD, 3-105
INJDD, 3-105
INKDD, 3-105
INLDD, 3-105
INMDD, 3-105
INNDD, 3-105
INODD, 3-106
INPDD, 3-106
INQDD, 3-106
INRDD, 3-106
INSDD, 3-106
INTDD, 3-106
INUDD, 3-106
INVDD, 3-106
INWDD, 3-106
INXDD, 3-106
INYDD, 3-106
INZDD, 3-106
LIST, 3-106
LISTABL, 3-107

LISTOPT, 3-102, 3-107
MBUFFER, 3-107
MOVCVTX, 3-107
MSGROLL, 3-107
OFADD, 3-107
OFBDD, 3-107
OFCDD, 3-107
OFDDD, 3-107
OFEDD, 3-107
OFFDD, 3-107
OFGDD, 3-108
OFHDD, 3-108
OFIDD, 3-108
OFJDD, 3-108
OFKDD, 3-108
OFLDD, 3-108
OFMDD, 3-108
OFNDD, 3-108
OFODD, 3-108
OFPDD, 3-108
OFQDD, 3-108
OFRDD, 3-108
OFSDD, 3-108
OFTDD, 3-109
OFUDD, 3-109
OFVDD, 3-109
OFWDD, 3-109
OFXDD, 3-109
OFYDD, 3-109
OFZDD, 3-109
OVLY, 3-109
PARMEXE, 3-109
PARMFLD, 3-109
PRNTLCT, 3-110
PRODCOD, 3-110
PRTDD, 3-110
PRTSIZE, 3-110
PUNDD, 3-110
PUNSIZE, 3-110
QJMDUMP, 3-111
RESVMEM, 3-111
RPTDD, 3-111
RPTSPCE, 3-111
RPTSYS, 3-111
SAVAREA, 3-111
SEQCHK, 3-111
SORTABL, 3-111
SORTPRT, 3-112
SORTRTE, 3-112

Index–10 VISION:Report Reference Guide

SORTSIZ, 3-112
SORTSYS, 3-112
SORTWRK, 3-112
SPIE, 3-112
SQLA1, 3-112
SQLA2, 3-112
SQLA3, 3-113
SQLA4, 3-113
SQLA5, 3-113
SQLPLNM, 3-113
SQLSYSN, 3-113
SQLVER, 3-114
SRTADJ, 3-114
SRTERCD, 3-114
SRTMSG, 3-114
SRTPGM, 3-114
SRTSIZE, 3-114
SRTWKN, 3-114
STMTEND, 3-114
STMTIN, 3-115
STMTLCT, 3-115
STXITPC, 3-115
SUBSPIE, 3-115
TRACECT, 3-116
TRLNAME, 3-116, 3-124
U331DMP, 3-116
U333ABE, 3-116
U334DMP, 3-116
U335DMP, 3-116
U336DMP, 3-116
U338DMP, 3-117
U339DMP, 3-117
UABNDMP, 3-116
UEXIT1, 3-116
VLABEND, 3-117
WSTSIZE, 3-117
XAMODE, 3-117
ZEROPRT, 3-117

OPTION QUIKJOB, A-1, A-3

OPT-RESET
QUIKVSAM, 7-18

OR, 3-59, 3-118, 3-180
examples, 3-59

output files
number of, 2-15

P

packed literal, 3-20, 3-71, 3-81

page header modification, 3-52

pageheaders, 6-78

PAGETOTALS, 3-119
examples, 4-43

PAGEWIDTH, 3-120

PCB, 2-4

PDS and PDS/E Routine, 6-68
See also QUIKIPDS[PDS and PDS/E Routine], 6-
68

PERFORM, 3-120

PERFORM/EXIT, 3-26

PFLEOPT, 3-110

phase library, 3-19, 3-25

plan name, 3-113

PNR, 2-5, 2-16

POINT, 7-36
examples, 4-91

PRINT, 3-17, 3-52, 3-121
DOUBLESPACE, 3-121
examples, 4-27, 4-29, 4-30
TRIPLESPACE, 3-121
with ACCUM, 3-120

PRINT REPORT, 3-122

PRINT REPORT SUMMARY
example, 4-68

print user date table, 6-32

PRINTCHAR, 3-124, 6-98

PRINTHEX, 3-124, 3-125, 6-98
examples, 3-125, 4-13, 4-72
warning, 3-125

PRNTLCT, 3-110

PRODCOD, 3-110

PRT, 2-5

PRT area, 3-72

PRTDD, 3-110

PRTSIZE, 3-52, 3-110

 Index–11

PTx, 2-5

PUN, 2-5

PUNCH, 3-126

punctuation characters, 3-85

PUNDD, 3-110

PUNSIZE, 3-110

PUT MOVE, 2-4

Q

QJBIDMS, 6-36

QJBTDLI, 6-41

QJCOBCVT, 6-1, 6-9

QJCOMREG, 6-1, 6-14

QJDBOMP, 6-2

QJEDIT
installation materials, 6-1

QJEPRNT, 6-1, 6-15

QJERAND, 6-1, 6-15

QJJOBCOM, 6-1

QJMDUMP, 3-111

QJOPTION macro,, 3-145

QJPUNINT, 6-1, 6-17

QUIKDATE, 6-1, 6-18, 6-19, 6-20
four-digit years, 6-18
functions, 6-21
HOLIDAY macro, 6-30
optional parameter values, 6-20
QUIKDATT, 6-18
return codes, 6-30

QUIKDATT, 6-1, 6-18

QUIKDLI, 3-103, 6-1, 6-41

QUIKDPRT, 6-1, 6-32

QUIKEMSK
edit masks, 3-85
installation materials, 6-1

QUIKFLOP, 6-1, 6-34
examples, 6-34

QUIKIDMS, 3-103, 6-1, 6-36, 6-39

QUIKILIB, 6-1, 6-40

QUIKIMS, 6-1, 6-41, 6-42, 6-44, 6-45

QUIKINCL, 4-34, 6-1, 6-46
examples, 6-47

QUIKIPAN, 6-1, 6-50

QUIKIPDS, 4-34, 6-1, 6-52, 6-54, 6-56
as a callable subroutine, 6-55
examples, 4-78, 6-53
message area, 6-55
return codes, 6-55
up to 6 INCLUDEs, 6-53

QUIKISAM, 6-1, 6-57, 6-58, 6-59, 6-60, 6-62, 6-63, 6-64,
6-66

add records, 6-57, 6-59, 6-65
close, 6-66
CLOSE, 6-60
examples, 6-58, 6-59
random retrieval, 6-57, 6-58, 6-64
record formats, 6-61
Record formats, 6-61
return codes, 6-60
update, 6-57, 6-58, 6-64

QUIKMOVE, 6-1, 6-67
examples, 4-11, 6-67

QUIKPDS, 6-1, 6-68, 6-70
error messages, 6-73
read, 6-69
return codes, 6-70

QUIKRPT, 6-1, 6-75, 6-76, 6-80
DOHDR (pageheaders), 6-78
examples, 6-78
formats, 6-75
LCT, 6-77
linecount location, 6-77
linecount value, 6-77
MVS JCL example, 6-79
write printline, 6-78

QUIKSORT, 3-128, 3-132, 3-152
examples, 3-153
MVS options, 3-145
record sorting, 3-150
RELEASE, 3-150
RETURN, 3-150

Index–12 VISION:Report Reference Guide

QUIKTABL, 6-1, 6-81, 6-85, 6-87, 6-88, 6-89, 6-90, 6-91,
6-92, 6-93, 6-94

deleting a table, 6-92
DELT, 6-82
determining size of table area, 6-95
error messages, 6-93
examples, 6-84
FIND, 6-82
FINR, 6-82
GET, 6-82
PUT, 6-82
REPL, 6-82
replacing a table entry, 6-91
SRCH, 6-82
user error checking, 6-93

QUIKTIME, 6-1, 6-96
examples, 6-96

QUIKTRAN, 6-1, 6-97

QUIKTRN, 6-98

QUIKTRNT, 6-1, 6-98

QUIKVEQU, 3-39, 6-1, 6-98

QUIKVSAM, 3-31, 7-10, 7-11, 7-12
ADD, 7-10
ADD examples, 7-34
AMS examples, 7-29
application, 7-2
assembler call, 7-1
CLOSE, 7-11
CLOSE and REOPEN, 7-12
COBOL call, 7-1
description, 7-1, 7-5
ERASE, 7-13
examples, 4-37, 7-29
functions, 7-5, 7-10, 7-18, 7-22
GET, 7-14
GET-UPD, 7-15
LOAD, 7-16
OPEN, 7-17
OPT-RESET, 7-18
POINT, 7-14, 7-15, 7-19, 7-36
POINT example, 7-36
prerequisites, 7-1
RANDOM, 7-21
random retrieval, 7-21
READ, 7-21
READ-UPD, 7-22
return codes, 7-5
RRADD, 7-23
RRGET, 7-24
RRGET-UPD, 7-25
RRLOAD, 7-26

SEQNTL, 7-14
sequential retrieval, 7-37
support, 7-8
TCLOSE, 7-27
UPDATE, 7-28, 7-33
UPDATE examples, 7-34

QUKBEMSK
edit masks, 3-85
installation materials, 6-1

QUKBLIB, 6-99

QUKBTRN, 6-1

QUKBVEQU, 6-98

R

random access
example, 4-75

random number generator, 6-15

range checking, 4-21

RBA (relative byte address), 3-127, 3-141

READ
examples, 4-75, 4-81, 4-86, 4-91
VSAM only, 3-127

READ-UPD
examples, 4-91

record matching
example, 4-65

record retrieving, 6-102

RELEASE, 3-128

REPORT, 3-6, 3-129, 3-131
edit codes, 3-131
with ACCUM, 3-5

RESET, 3-95

RESTORE, 3-137

RESVMEM, 3-111

RETURN, 3-128
example, 3-133
valid only with SORT AREA, 3-132

RETURN (SORT), 3-132

Return codes
@VAL-RETURN-CD, 3-40

 Index–13

QUIKDATE, 6-30
QUIKIPDS, 6-55
QUIKISAM, 6-57, 6-59, 6-60
QUIKPDS, 6-70, 6-71, 6-72
QUIKTABL, 6-82

REVERSE WHEN
example, 4-70

REWRITE, 3-142
examples, 4-75, 4-81, 4-86
ISAM file examples, 3-135

REWRITE (ISAM only), 3-135

REWRITE (VSAM only), 3-134

RMODE (any), 3-19

RPTDD, 3-111

RPTSPCE, 3-111
examples, 4-66

RPTSYS, 3-111

RRADD, 7-23

RRDS, 3-13

RRGET, 7-24

RRGET-UPD, 7-25

RRLOAD, 7-26

S

SAV, 2-5

SAVAREA, 3-111

SAVE, 3-137

SEQCHK, 3-98, 3-111

SEQNTL
QUIKVSAM, 7-14

sequence numbers, 2-1

SET, 3-137, 3-139
allowable forms, 3-138
DOWN, 3-137
RESTORE, 3-137
SAVE, 3-137

SET PCC
examples, 4-70

SETGENKEY, 3-141, 3-142

examples, 4-81, 4-86
ISAM example, 3-143

SETGENKEY (ISAM only), 3-142

SETGENKEY (VSAM only), 3-141

SETPTA
examples, 4-81, 4-86

simple accumulation, 3-4

SKIP, 3-144
examples, 3-144

SORT, 3-145
examples, 3-128, 3-154
multiple sorts, 3-152
options, 3-145

SORT AREA, 3-147, 3-149
examples, 3-148, 3-150
variable length records, 3-152

SORT FILE, 3-153
examples, 3-153

SORTABL, 3-111, 3-163

Sorting
examples, 4-15

SORTPRT, 3-112

SORTRTE, 3-112

SORTSIZ, 3-112

SORTSYS, 3-112

SORTWRK, 3-112

Source Statement Library Routine, 6-46
See also QUIKINCL[Source Statement Library
Routine], 6-46

SPACE, 3-36, 3-57

SPIE, 3-112

SPIE macro, 3-115

SQLA1, 3-112

SQLA2, 3-112

SQLA3, 3-113

SQLA4, 3-113

SQLA5, 3-113

SQLPLNM, 3-113

Index–14 VISION:Report Reference Guide

SQLSYSN, 3-113

SQLVER, 3-114

SRTADJ, 3-114
examples, 4-66

SRTADJ option, 3-151

SRTERCD, 3-114

SRTMSG, 3-114

SRTPGM, 3-114, 3-146

SRTSIZE, 3-114

SRTWKN, 3-114

Statements
ABEND, 3-2
ACCEPT, 3-3
ACCUM, 3-4, 3-5, 3-8, 3-10
ADD, 3-12
ADDRECORD, 3-13
ATEND, 3-15
BREAK, 3-17
CALL, 3-19
CHECKBREAKS, 3-25
CLOSE, 3-28
CLOSER, 3-29
CONDATE, 3-30
DELETE, 3-31
DISPLAY, 3-31
DIVD, 3-32
DOHEADERS, 3-33
DROP, 3-33
EJECT, 3-34
END, 3-34
EQU, 3-36
EXDATE, 3-44
EXIT, 3-45
GET, 3-46
GOTO, 3-48
HDR, 3-49
HEXCOND, 3-53
HEXEXPD, 3-55
IF, 3-56
LIMITREADS, 3-67
LINCOUNT, 3-68
LOAD, 3-69
MOVCOND, 3-70
MOVE, 3-71
MOVE (expanded editing), 3-83
MOVE (QJEDIT macro), 3-84
MOVE (variable length), 3-81
MOVEXPD, 3-90

MOVNUM, 3-91
MOVZON, 3-92
MSHIFT, 3-93
MULT, 3-94
OPEN, 3-95
OPTION, 3-97
OR, 3-118
PAGETOTALS, 3-119
PAGEWIDTH, 3-120
PERFORM, 3-120
PRINT, 3-121
PRINT REPORT, 3-122
PRINTCHAR, 3-124
PRINTHEX, 3-125
PUNCH, 3-126
READ, 3-127
RELEASE, 3-128
REPORT, 3-129
RETURN, 3-132
REWRITE (ISAM only), 3-135
REWRITE (VSAM only), 3-134
SAMPLE, 3-136
SET, 3-137
SET PCC, 3-139
SETGENKEY (ISAM only), 3-142
SETGENKEY (VSAM only), 3-141
SKIP, 3-144
SORT, 3-145
SORT AREA, 3-149
SORT fields, 3-147
SORT FILE, 3-153
SUB, 3-156
TABLSORT, 3-158, 3-159
TABLSPEC, 3-160
TITLE, 3-170
TITLE2, 3-170
TRACE, 3-172
TRACE LAST50, 3-174
TRAN, 3-175
TRNT, 3-176
WHEN, 3-177
WRITE, 3-181
XOR, 3-183

STMTEND, 2-2, 3-114

STMTIN, 3-115

STMTLCT, 3-115

STMTS, 5-3, 5-4

STXITPC, 3-115

SUB, 3-4, 3-156
examples, 3-157

 Index–15

Subroutine to Access COMREG Area, 6-14
See also QJCOMREG[Subroutine to Access
COMREG Area], 6-14

Subroutine to Access JOBCOM Area, 6-16
See also QJJOMCOM[Subroutine to Access
JOBCOM Area], 6-16

SUBSPIE, 3-115

SUMMARY
examples, 4-41, 4-48, 4-68
with BREAK, 3-122

summary reporting, 3-16

T

table, 6-81
automated functions, 6-81
checking, 4-23, 4-24
examples, 4-27, 4-29
loading, 4-30, 4-32, 6-81
lookup, 4-13, 4-21
updating, 4-25

TABLE
examples, 4-21, 4-41

TABLSOR2, 3-159

TABLSORT, 3-158
examples, 3-158, 3-159, 4-29, 4-30

TABLSPEC, 3-160, 3-165
advanced techniques, 3-166
indexing, 3-167
user data tables, 3-162
variable data format, 3-160
warning, 3-165

tape load, 4-6, 4-8

TBH (Table Hit), 2-5, 3-111, 3-166

TCLOSE, 7-27

technical support
contacting Computer Associates, B-1

Time Subroutine, 6-96
See also QUIKITIME[Time Subroutine], 6-96

TITLE, 3-170
example, 3-171

TITLE2, 3-170

TOTAL, 3-21, 6-1, 6-105

TOTAL interface, 6-105

TOTAL4, 6-1, 6-105

TOTAL4 interface, 6-105

TRACE, 3-172
examples, 3-173

TRACECT, 3-116

TRAN, 3-175

translate table, 6-98

TRLNAME, 3-116, 3-124

TRNT, 3-176

troubleshooting, 4-97

TSA (Table Start Address), 2-5

U

U331DMP, 3-116

U333ABE, 3-116

U334DMP, 3-116

U335DMP, 3-116

U336DMP, 3-116

U338DMP, 3-117

U339DMP, 3-117

U3999 ABEND, 6-63

UABNDMP, 3-116

UEXIT1, 3-116, 6-50, 6-52

UPDATE
examples, 4-91

user data tables, 3-162

user options, 3-97

user routine interface, 3-22

V

VAL area, 2-5, 2-6, 3-39, 6-98

verb syntax, 2-2

Index–16 VISION:Report Reference Guide

VISION:Eighty option, A-1

VISION:Report
enhancements, 1-2

VLABEND, 3-117

VSAM
examples, 4-72
KSDS, 3-13
RRDS, 3-13

VSE
file specification formats, 2-1
space management, 5-4

VSE subroutine considerations, 3-25

W

web page
Computer Associates, 1-3, B-1

WHEN, 3-59, 3-177
AND, 3-179
examples, 4-78
OR, 3-180

working storage, 2-5
examples, 4-37

WRITE

errors, 3-181
examples, 3-182, 4-74, 4-86
MVS, 3-181
VSE, 3-181, 3-182

WST (working storage), 2-5, 3-111

WSTSIZE, 2-5, 3-117

X

XAMODE, 3-117

Y

year 2000, 6-19

Z

ZERO, 3-36, 3-57

zero suppression
MOVE option, 3-71

ZEROPRT, 3-117

	Reference Guide
	Contents
	Chapter 1: Introduction
	About This Guide
	Contacting Computer Associates

	Chapter 2: File specifications and Data Definitions
	Statement Format and Sequence
	Literals
	Data Areas
	VAL Area

	File Availability
	Field Definition
	Field Definition Examples

	Field Definitions and Sizes
	Named Accumulators CTA Through CTP
	VSAM Support
	VSAM Recommendations
	All VSAM Files
	KSDS Files
	ESDS Files
	RRDS and VRDS Files
	LDS Files

	VSE Parameter Statements
	VSE I/O Parameter Statements - Examples
	Accessing More Than One Input File

	VSE Input and Output Files
	VSE Block/Record Size
	VSE Fixed Length Files
	VSE Variable Length Files
	VSE Undefined Files
	VSE ISAM Files
	ISAM Output Parameters for OFA

	VSE Considerations
	VISION:Report Parameter Statements
	Execute Statement

	MVS Input and Output Files
	MVS Block/Record Size
	MVS Fixed Length Files
	MVS Variable Length Files
	MVS Undefined Files
	MVS ISAM Files

	MVS Considerations
	VISION:Report Parameter Statements
	Functional Differences
	Execute Statement
	DD Statement and File Characteristics
	Table Notes

	Database Files
	DB2 or SQL/DS
	ADABAS Interface
	TOTAL Interface
	DBOMP

	User Abend Codes
	Setting the Step Return Code
	Causing the Step to Abend

	Chapter 3: Statement Format
	General Rules
	ABEND
	ACCEPT
	ACCUM
	Simple Accumulation
	Addressable Accumulation

	ACCUM (with REPORT)
	ACCUM (User Addressable)
	ACCUM (Simple Accumulation)
	ADD
	ADDRECORD
	AND (Logical And)
	ATEND
	Automatic Summary Reporting

	BREAK
	CHECKBREAKS

	CALL
	Data Area Pointers
	Field Definitions
	Literals

	Using the CALL Statement to Execute User Coded Routines
	Technical Considerations
	VISION:Report/User Routine Interface
	COBOL Considerations
	COBOL Subroutines
	ANSINT
	VSE Considerations
	MVS Considerations

	CHECKBREAKS
	CHECKBREAKS with No Operands
	CHECKBREAKS ON BREAKS PERFORM seq-no THRU seq-no

	CLOSE
	CLOSER (VSAM ONLY)
	CONDATE
	DELETE
	DISPLAY
	DIVD
	DOHEADERS
	DROP
	EJECT
	END
	80-Byte Input Only
	80-Byte Input and Table Input

	EQU
	EQU Statements for VAL Area

	EXDATE
	EXIT
	GET
	GOTO
	HDR
	Page Header Modification

	HEXCOND
	HEXEXPD
	IF
	Arithmetic Comparison
	Numeric Comparison

	IF (Compound)
	Bit Testing
	String Scanning
	Numeric Comparison
	ELSE and ENDIF
	Nested IF Syntax
	Nesting ELSE and ENDIF

	LIMITREADS
	LINECOUNT
	LOAD
	MOVCOND
	MOVE
	Data Conversion
	Detailed Coding Rules
	Options
	Move Print Position Requirements
	Binary-Move Print Position Requirements

	MOVE (Variable Length)
	MOVE (Expanded Editing)
	Edit Mask Patterns
	Data Selector Characters
	Edit Fill Character
	Punctuation Characters
	Edit Mask Attributes
	Source Field Data Formats
	VISION:Report Supplied Patterns and Attributes

	MOVEXPD
	MOVNUM
	MOVZON
	MSHIFT
	MULT
	OPEN
	OPTION
	Summary of Job Options
	VISION:Report OPTION Keywords

	OR (Logical OR)
	PAGETOTALS
	PAGEWIDTH
	PERFORM
	PRINT
	PRINT REPORT
	PRINTCHAR
	PRINTHEX
	PUNCH
	READ
	RELEASE
	REPORT
	RETURN
	REWRITE (VSAM Only)
	REWRITE (ISAM Only)
	SAMPLE
	SET
	SET PCC
	SETGENKEY (VSAM Only)
	SETGENKEY (ISAM Only)
	SKIP
	Sorting
	SORT Fields
	SORT AREA
	SRTADJ Option
	Sort Area (V) and Multiple SORT Executions

	SORT FILE
	ADDITIONAL SORT OPTIONS
	SUB
	TABLSORT
	TABLSPEC
	User Data Tables
	Advanced Techniques for Referencing Tables
	Referencing Hit Entries Following an IF...ONTABLE
	Indexing Through the Table

	TCLOSE (VSAM ONLY)
	TITLE/TITLE2/TITLE n
	TRACE
	TRAN
	TRNT
	WHEN
	WRITE
	XOR (Logical XOR)

	Chapter 4: Examples
	Examples
	JCL Examples
	Example 1
	Load/Copy Tape to Disk

	Example 2
	Copy Card File to Two Tape Files, One Blocked and Standard Label, �One Unblocked and Unlabeled

	Example 3
	Variable Disk Input, Variable Tape Output

	Example 4
	Variable Record Output, Table Lookup, Indexing, PRINTHEX �Variable, PERFORM, HDR, OPTION STMTEND

	Example 5
	Create AR VSAM KSDS File Using Native VSAM from Sequential Disk, Sort File in Building VSAM Key

	Example 6
	Concatenate Two Undefined Record Files into One Undefined Output File

	Example 7
	File Maintenance or File Matching

	Example 8
	Table Lookup, Range Checking, Negative Field Testing

	Example 9
	Multiple Tables, Alphanumeric Checking

	Example 10
	Table Data for Repricing

	Example 11
	Accumulating Amounts in a Table, Print at EOJ

	Example 12
	Dynamically Create and Sort a Table, Accumulate, and Print at EOJ

	Example 13
	Table Load, TABLSORT, Print Various Sequences, Mu

	Example 14
	Native VSAM Using GET, QUIKIPDS/QUIKINCL, REPORT, SORT AREA with RELEASE/RETURN, DISPLAY, CALL to QUIKDATE

	Example 15
	Additional Working Storage and QUIKVSAM, Using OPTION, POINT, GET-UPD, ERASE, and MOVE with Quotes

	Example 16
	TABLSPEC, Indexing, Table ACCUM, BREAK, Summary �

	Example 17
	ACCUM Counts, Amounts Using CTR-NO, BREAK, CHECKB

	Example 18
	ACCUM Using CTR, BREAK, and CHECKBREAKS

	Example 19
	ACCUM Using CTA-CTC, BREAK, CHECKBREAKS, and Summary Output, PUNCH

	Example 20
	ACCUM, BREAK, and CHECKBREAKS

	Example 21
	ACCUM, BREAK, and CHECKBREAKS with Total Time Calculations, Multiple HDR

	Example 22
	Amortization Schedule, Calculations, No Input/Out

	Example 23
	Match Records of a Transaction File Against a Mas

	Example 24
	Print Report with OMIT, SORT AREA, SRTADJ and RPTSPCE

	Example 25
	Print Report Summary

	Example 26
	SET PCC, MOVE VARIABLE LENGTH, EQU with Literals, Negative Numbers, WHEN and WHEN/REVERSE, QUIKVSAM with Read-Upd and Update

	Example 27
	Native VSAM Using GET, SET PTA, PRINTHEX

	Example 28
	Native VSAM (RRDS) Using GET and SETGENKEY

	Example 29
	Native VSAM (RRDS) Using WRITE

	Example 30
	Native VSAM (KSDS, RRDS, ESDS) Using Random Access, READ, ADDRECORD, REWRITE, DELETE

	Example 31
	Native VSAM using GET, QUIKIPDS, WHEN with INCLUDES/OMITS, WHEN/REVERSE, IF...NUMERIC, IF...ALPHA, Negative IF, Multiple HDR with $names$

	Example 32
	Native VSAM (ESDS) with Alternate Index, Using OPEN/CLOSE, GET, READ, SETGENKEY, REWRITE, SET PTA

	Example 33
	Native Variable Length VSAM (KSDS, ESDS) Using OPEN/CLOSE, GET, WRITE, �SET PTA, READ, SETGENKEY, ONERROR

	Example 34
	QUIKVSAM \(KSDS\) with Alternate Index, Using �

	Example 35
	Troubleshooting Problems

	Example 36
	Mixture of Native VSAM and CALL to QUIKVSAM, with Field Names Greater Than 14 Characters, and Forcing $PAGE$ to be Greater Than 6 Digits

	Example 37
	Various Usages of IF (Nested IF, IF with Parentheses, IF/ELSE/ENDIF) and Bit Manipulation Instructions (such as AND, OR, XOR, TRAN, TRNT)

	Examples 38A and 38B
	IF Statement with Test Under Mask Operands

	Chapter 5: Troubleshooting and Memory Requirements
	Troubleshooting and Memory Requirements
	Program Check Routine
	Reporting Problems

	Memory Dumps
	Storage Requirements
	STMTS, GENSIZE, LITSIZE, and #EQU
	Data and Table Space
	File Sizes

	Chapter 6: Optional Material
	Optional Material
	DBOMPA \(QJDBOMP\) — DBOMP Interface \(VSE On�
	Call Format for Master File Processing
	Call Format for Chain File Processing
	Call Format for Closing the Files

	LIBR**** — CA-Librarian Interface Assistance \(V
	QJCOBCVT — Convert COBOL copybooks to VISION:Repo
	Optional Parameters
	Messages

	QJCOMREG —Subroutine to Access COMREG Area \(VSE
	QJEPRNT — List Edit Masks
	QJERAND — Random Number Generator
	QJJOBCOM — Subroutine to Access JOBCOM Area \(VS
	QJPUNINT — 3525 Punch/Interpret Subroutine \(VSE
	QUIKDATE — Date Calculation
	QUIKDATT
	QUIKDATE
	Function 11 — Checks for holiday and time off

	QUIKDPRT — Print User Date Table
	QUIKFLOP — 3540 Floppy Disk Subroutine \(VSE On
	QUIKIDMS — CA-IDMS/DB Access Interface\(Optional
	QUIKILIB — CA-Librarian Interface Assistance \(M
	QUIKDLI — DL/I Interface \(VSE Only\) \(Optio�
	QUIKIMS and QUIKDLI Syntax

	QUIKINCL — Source Statement Library Routine \(VS
	Nested INCLUDES

	QUIKIPAN — CA-Panvalet Subroutine \(MVS Only\)
	QUIKIPDS —PDS and PDS/E Include Subroutine \(MVS
	QUIKIPDS Used as a User Exit At Compilation Time
	Nested INCLUDES

	QUIKIPDS Used as a Callable Subroutine At Execution Time

	QUIKISAM —MVS ISAM Subroutine
	QUIKISAM CALL Formats
	Random Retrieval
	Update
	Add or Insert
	Call to Close Files
	Size of Routine
	Record Formats and Space Requirements
	Exceptions and Exceptional Conditions

	QUIKISAM — VSE ISAM Macro
	QUIKMOVE — Variable/Undefined Move Routine
	QUIKPDS — PDS and PDS/E Routine \(MVS Only\)
	Opening a PDS
	Closing a PDS
	Reading a Directory Entry
	Reading a Member
	Updating a Member
	Checking the Return Code
	Sequential Retrieval of Directory Entries
	Random Retrieval of Directory Entries
	Sequential Retrieval of All Members
	Generic Retrieval of Directory Entries
	Random Retrieval of a Member
	Updating a Member
	Error Messages

	QUIKRPT — Multiple Reports Processor
	QUIKRPT Call Formats
	Declarative Functions
	Imperative Functions

	QUIKTABL — Automated Tabling Routine
	Load a Table
	Retrieve an Entry by Key — Starting at a Specifie
	Retrieve Each Entry Starting from the Beginning
	Retrieve a Particular Entry by Entry Number
	Binary Search for a Particular Entry by Key
	Replace an Entry in a Table
	Delete a Table
	User Error Checking and Handling
	06 - Invalid Entry Length.
	07 - Requested Table Not Found.
	08 - Tabling Area is Full.
	09 - Invalid/Missing Parameter or Opcode.

	Determine the Proper Size of the Table Area

	QUIKTIME — Time Subroutine
	QUIKTRAN — ASCII/EBCDIC Translator
	File Data Translation Routine

	QUIKTRNT —Translate Table \(MVS Only\)�QUKBTRN
	QUIKVEQU — EQU Statements for VAL Area
	QUKBLIB — VSE Library Interface \(VSE Only\)
	Opening a Library
	VAL 46-49 Return Codes:

	Retrieve a record
	End of Member Processing
	VAL46-49 Return Codes:

	Closing a Library
	VAL46-49 Return Codes:

	Miscellaneous Return Codes
	VAL46-49 Return Codes:

	TOTAL Interface (VSE Only)
	TOTAL4 Interface

	Chapter 7: QUIKVSAM
	QUIKVSAM
	Prerequisites
	Application

	QUIKVSAM Communication/Feedback Area Contents
	QUIKVSAM Description
	KSDS
	ESDS
	RRDS

	QUIKVSAM Level of Support
	VSAM Function/Option
	VSAM Share Options
	Functions
	Add/Insert Sequential (KSDS)
	ADD Command
	Operands

	Close Data Set (KSDS, ESDS, RRDS)
	CLOSE Command
	Operands

	Close and Reopen Data Set (KSDS)
	CLOSER Command
	Operands

	Erase Random and Sequential (KSDS,RRDS)
	ERASE Command
	Operands

	Retrieve Sequential (KSDS,ESDS)
	GET or SEQNTL Command
	Operands

	Retrieve Sequential for Update (KSDS, ESDS)
	GET-UPD Command
	Operands

	Load/Insert Sequential (KSDS, ESDS)
	LOAD Command
	Operands

	Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPEN
	OPEN Command
	Operands

	Set Up Communication/ Feedback Area (KSDS, ESDS, RRDS) Using OPTION and OPT-RESET
	OPTION and OPT-RESET Command
	Operands

	Point/Generic Position (KSDS, ESDS, RRDS)
	POINT or PNT Command
	Operands

	Retrieve Random (KSDS, ESDS, RRDS)
	READ or RANDOM Command
	Operands

	Retrieve Random for Update (KSDS, ESDS, RRDS)
	Command: READ-UPD
	Operands

	Add/Insert Random (RRDS)
	RRADD Command
	Operands

	Retrieve Sequential (RRDS)
	RRGET Command
	Operands

	Retrieve Sequential for Update (RRDS)
	RRGET-UPD Command
	Operands

	Load/Insert Sequential (RRDS)
	RRLOAD Command
	Operands

	Temporary Close (KSDS, ESDS, RRDS)
	TCLOSE Command
	Operands

	Update/Change Random or Sequential (KSDS, ESDS, RRDS)
	Command: UPDATE
	Operands

	Examples
	Example 1 — Define \(using AMS\) and Load a Va�
	AMS Statements
	VISION:Report Statements
	VSE JCL Example
	MVS JCL Example

	Example 2 — Copy a VSAM Data Set to Tape
	VSE JCL Example
	MVS JCL Example

	Example 3 — Load VSAM Data Set with Fixed Length
	VSE JCL Example
	MVS JCL Example

	Example 4 — Retrieve Records Sequentially for UPD
	VSE JCL Example
	MVS JCL Example

	Example 5 — Random/Sequential Retrieve with UPDAT
	VSE JCL Example
	MVS JCL Example

	Example 6 — Point and Sequential Retrieval
	VSE JCL Example
	MVS JCL Example

	Example 7 — Sequential Retrieval with BREAKS, Acc
	VSE JCL Example
	MVS JCL Example

	Appendix A: Invoking VISION:Report from VISION:Results or VISION:Eighty
	DYLQKIMS
	MVS JCL
	VSE JCL
	Basic VISION:Report Program
	VISION:Report MVS JCL with CA-IDMS/DB
	A Typical VISION:Report Program to Call CA-IDMS/DB Functions
	VISION:Report MVS JCL with IMS
	A Typical VISION:Report Program to Call IMS Functions

	Index

